

Two 16-page bonus sections for OSI and Apple users

A Bit Pad for Your Micro

 AlM Memory MapsExpressions Revealed 6809 Super Features

Turn your Apple info the world's most versatile personal computer:

The SoftCard ${ }^{\text {m }}$ Solution. SoftCard turns your Apple into two computers. A Z-80 and a 6502 . By adding a Z-80 microprocessor and CP/M to your Apple, SoftCard turns your Apple into a CP/M based machine. That means you can access the single largest body of microcomputer software in existence. Two computers in one. And, the advantages of both
Plug and go. The SoftCard system starts with a $\mathrm{Z}-80$ based circuit card. Just plug it into any slot (except 0) of your Apple. No modifications required. SoftCard supports most of your Apple peripherals, and, in 6502 mode, your Apple is still your Apple.
CP/M for your Apple. You get CP/M on disk with the SoftCard pack.age. It's a powerful and simple-to-use operating system. It supports more software than any other microcomputer operating system. And that's the key to the versatility of the SoftCard/Apple.

CIRCLE READER SERVICE NUMBER

BASIC included. A powerful tool, BASIC-80 is included in the SoftCard package. Running under CP/M, ANSI Standard BASIC-80 is the most powerful microcomputer BASIC available. It includes extensive disk I/O statements, error trapping, integer variables, 16 -digit precision, extensive EDIT commands and string functions, high and low-res Apple graphics, PRINT USING, CHAIN and COMMON, plus many additional commands. And, it's a BASIC you can compile with Mlicrosoft's BASIC Compiler.
More languages. With SoftCard and CP/M, you can add Microsoft's ANS Standard COBOL, and FORTRAN, or

Basic Compiler and Assembly Language Development System. All, more powerful tools for your Apple.
Seeing is believing. See the SoftCard in operation at your Microsoft or Apple deater. We think you'll agree that the SoftCard turns your Apple into the world's most versatile personal computer.
Complete information? It's at your dealer's now. Or, we'll send it to you and include a dealer list. Write us. Call us. $\mathrm{O}_{\text {i }}$, circle the reader service card number below.
SoftCard is a trademark of Microsoft. Apple II and Apple II Plus are registered trademarks of Apple Computer Z-80 is a registered trademark of Zilog. inc. CP/M is a registered trademark of Digital Research, Inc.

Microsoft Consumer Products, 400 108th Ave. N.E.
Bellevue, WA 98004. (206) 454-1315

DATA CAPTURE 4.0

The most advanced and easiest to use telecommunications program for use

 with the MICROMODEM $\|^{\text {w }}$ or the Apple COMMUNICATIONS CARD ${ }^{\text {sw }}$0. WIII DATA CAPTURE 4.0 work with my Communications Carder and a modem?
A. II makes using the Comm. Card almost as easy as using the Micromodem II
Q. Dol rieed an extra editor to prepare text for transmission to another compliter?
A. No. DATA CAPTURE 4 o gives you control of the text buffer. You can use DATA CAPTUFE 40 to create text.
Q. Can l edit the text 1 have prepareot?
A. Yes, You can insert lines or detete any lines from the text.
Q. How about text I hever captured. Canl edit that?
A. As easily as the text you have prepared yourself. You can delete any lines you don' want to printor save to a disk file. You can also insert ines into the toxt.
C. Just how much text can I capture with DATA CAPTURE 4.0 ?
A. It he system with which you are communicating accepts a stop chafacter, most use a Control S, you can capture an unimited amount of text
a. How does that work? ind do I have to keep an eye on how much I have alreaty captured?
A. When the text buifer is tull the stop character is output to the other system. Ther DATACAPTURE 40 wiles what has been captured up to that point to a disk file. This is done automatically
a. Then what happens?
A. Controf is retumed to you end you can send the start character to the other system. This generally requires pressing any key the RETUPN key or a Control 0 .
a. Are uppar and lower case supportad III have a Lower Caso Alapter
A. Yes. If you don't have the adapter an upper case only version is also provided on the diskette.
Q. Bol inoad to have my printer card or Micromochem He: or Communicetions Geardes in any special slot?
A. No. All this is taken cere of when you first rin a short program to contigure DATA CAPTURE 4 . to your system. Then you don't heve to be concerned with it again. It you move your cards around later you can recontigure DATA CAPTURE4.
Q. Do I have to build a tile on the other systam fo get it seni to my Apple?
A. No. if the other system can ist it you can capturo it
a. How easy is 1 to transmh text or cata to another system?
A. You can load the text or data into DATA CAPTURE 4.0 from the disk and transmit it Or you can transmit what you have typed into DATA cAPTURE 4.0
a. How cant be sure the dether tyetinit remives what! send the
A. II the other system wotks in Fill Duplax, "techoes what You send it, then DATA CAPTURE 400 mojusts it sencing speed to the other systent and won' send the next character until it is sure the present one has baen recaived. We call that Dynamic Sending Speod Acfustment:
a. What II the other yysten woikn onhy in hafi Buptex:
A. A difterent sending roethe is provided lior use with Halt Duplex systems.
1. What hl want to trament a progitan to the other systemt
A. No problem. You make the progran into a text fite with a progran that is provided with OATA CAPTURE 4.0, band 1 into DATA CAPTURE 40 and mansmiti:
Q. What type flles can I read and save with DATA CAPTURE $4.0 ?$
A. Any Apple DOS sequantial text file, You can create and edit EXEC fles, send or receive VISClalce data fibs. send or receive text files created with any editor that uses text tiles.
2. Can I leave DATA CAPTURE 40 rinning on my Apple at home and use IIf hom enotive syatem?
A. Yes. If you are using the Marromodem lio you can call DATA CAPTURE 4 . t tem another system. This is handy 1 you are at work and want to transmit something to your unattendiod Apple at home:
a. Where can l buy DATA CAFTURE $4.0 ?$
A. Your tocal Apple dealer. II he doesnt have It ask him to orderll Or it you can' wait order it directy from Southeastem Softwars: The price is \$65.00. To order the Dan Paymar Lower Case Adapter add \$64.95 and include the serial number of your Appla:
Q. II order it directiy how cenil pay for it?
A. We accept Master Charge, Visa or your personal check You will get your order shipped within 3 working days of when we recelve lt no matter how you pay for ili. Send your order to us at the addrass shown or call either of the numbers in this advertsement You can call anytime of day, evening or Saturdays:
Q. Ibought bata capture 30 and Dath CAPTURE 4.0 sounde so good I want this vertion. What do 1 do to upgrace?
A. Send us your onighal BATA CAPTURE 3.0 diskette and documentation, the S35.00 price cifference and $\$ 2.50$ for postag: and handing. Wo will send you DATA CAPTURE 4.0 within 3 working deys of receiving yout order.
a. What ind of mapport canl mapect mer I buy It?
A. If you have bought forn Southeastem Solvare in the past you know we are alvays reacy to answer any questions about our prodicts or hew to use then.

Requires Bisklus Applesphimen and48k of Wemory

DATACAPTUREALDG

Copyrighte 1980 -Southeastern Solware

We welcome your personal check. We also accepi Visa and Master Charge.

Southeastern Software
 Depl: MK
 6414 Dertyshire Dive i Now Orleans, La 70126 $504 / 246$-8438 $504 / 246-7937$

TGK RAM EXPANSION BOARD FOR THE APPLE II* $\$ 195.00$

The Andromeda 16K RAM Expansion Board allows your Apple to use RAM memory in place of the BASIC Language ROMs giving you up to 64 K of programmable memory. Separate Applesoft* or Integer BASIC ROM cards are no longer needed. The 16K RAM Expansion Board works with the Microsoft Z-80 card, Visicalc, DOS 3-3. Pascal, Fortran, Pilot, and other software. A switch on the card selects either the RAM language or the mainboard ROMs when you reset your Apple.

The Andromeda 16 K RAM Expansion Board has a proven record for reliability with thousands of satisfied customers.

Now with One Year Warranty.

*Apple II and Applesoft are trademarks.

P.O. Box 19144

Greensboro, NC. 27410
919 852-1482
Distributed By

P.O. Box 696

Amherst, NH. 03031
603 673-7375

THE 6502/6809 JOURNAL

STAFF

Editor/Publisher ROBERT M. TRIPP

Associate Publisher RICHARD RETTIG
Associate Editor MARY ANN CURTIS

Special Projects Editor MARJORIE MORSE

Art Director GARY W. FISH

Production Assistant LINDA GOULD
Typesetting EMMALYN H. BENTLEY

Advertising Manager CATHI BLAND

Circulation Manager CAROL A. STARK
Dealer Orders LINDA HENSDILL
MICRO Specialists
APPLE: FORD CAVALLARI
PET: LOREN WRIGHT OSI: PAUL GEFFEN

Comptroller
DONNA M. TRIPP
Bookkeeper
KAY COLLINS
Sales Representative KEVIN B. RUSHALKO

DEPARTMENTS

5 Editorial
6 Letterbox
25 Club Circuit
30 New Publications
91 PET Vet
99 Hardware Catalog
101 Software Catalog
103 Microbes and Updates
1066502 Bibliography
111 Advertisers' Index

ARTICLES

7 AIM Memory Maps
Greg Paris
Find and use undocumented features
13 Function Input Routine for Applesoft. Roy E.Myers, William Miller III
15 Vector Calculations with a Microcomputer. Peter A. Koski Use vectors quickly and easily with your micro
21 Phone Search. Horst K. Schneider
Cross-link phone numbers with record numbers
27 It's Time to Stop Dreaming, Part $2 \ldots .$. Robert M. Tripp More information about the 6809

49 Expressions Revealed, Part.1.................... Richard C. Vile, Jr. Scanning, parsing and translation of expressions revealed
61 Electronic Typing Program for the Apple......... Thomas D. Brock Small word processor that edits one-line-at-a-time

81 An Introduction to Bit Pads. Loren W. Wright PET Interface to Bit Pad. Peter Coyle Information on hardware and software implementation
87 Bit Pad Routines for AIM $65 \ldots \ldots \ldots \ldots$. . . . Ralph O. Erickson Assembly language program to interface AIM to a digitizer

APPLE BONUS

Double Barrelled Disassembler.

David L. Rosenberg
Short utility that makes creating disassembly listings easy
Single-Drive Disk Back-Ups for Apple. Steve EmmettBack up a disk without worrying about files residing on it41 Enhanced Input RoutineBruce A. RobertsonPut data into your program quickly and easily
45 Binary File Parameter List.

\qquad
. Clyde R. Camp List address and length of all binary files on a given disk

OSI BONUS

A Typewriter Bell for Your Microcomputer. Charles L. Stanford Hardware and software sound an alarm when you near the end of a line
Monobyte Checksum Dumper for C1P.........
This utility provides fast tape I/O and checksum protection
Line Editor for OSI 540 Board. E.D. Morris, Jr. Elementary line editing functions for OSI computers with BASIC-in-ROM
Life in a Wrap-around Universe. Paul Krieger
A novel variation on the old game
79
A single step trace for BASIC programs

About the Cover

Real Estate
Pictured on this month's cover is the historic Fiske House in downtown Chelmsford, just down the block from MICRO. The display shows one of the ways that a microcomputer might be used in the real estate business: to present listings to potential buyers. Instead of requiring the buyer to look at dozens or even hundreds of houses, many of which are of absolutely no interest, the buyer could answer a short questionnaire detailing the type of house, location, price range, bedrooms, and other significant features desired. This material then could be used to match the houses on. file and to present only those houses for consideration which had a reasonably high correlatron. In addition to listing the basic facts normally found, the file could contain a floor plan, as in the cover example; a map showing the location of the house; a simulated "tour" of the house; and other pertinent information.

MCRO is published monthly by: MICRO INK, Inc., Chelmsford, MA 01824 Second Class postage paid at:
Chelmsford, MA 01824 and Avon, MA 02322
USPS Publication Number: 483470
ISSN: 0271-9002

Send subscriptions, change of address, USPS Form 3579, requests for back issues and all other fulfillment questions to

MICRO

P.O. Box 6502

Chelmsford, MA 01824
or call
617/256-5515

Subscription rates	Per Year
U.S.	$\$ 18.00$
Foreign surface mail	$\$ 21.00$
Air mail:	
Europe	$\$ 36.00$
Mexico, Central America	$\$ 39.00$
Middle East, North Africa	$\$ 42.00$
South America, Central Africa	$\$ 51.00$
South Africa, Far East,	$\$ 60.00$
Australasia	

Copyright © 1981 by MICRO INK, Inc. All Rights Reserved

An Important 18 Cent Investment
A frustration in publishing MICRO arises from the fact that the information flow is essentially unidirectional. While a tremendous volume of material goes out, only a trickle of information comes back in. There is very little feedback from the MICRO readership to let us know how we are doing. The letters we get from individuals tend to focus only on one or two points that are of jimmediate importance to the author of the letter. There is no regular channel for us to obtain a broad-base understanding of who our readers are, what interests them, what they do with their computers, what they would like to do with their computers, and so forth. To help remedy this, we are taking a reader survey. You will find the Reader Survey Form inserted between pages 96 and 97 of this issue. The information received in this survey will have a major influence on the directions which MICRO takes in the near future. Therefore, those readers who do take the time to complete the questionnaire and spend the 18 cents to return it will have a great influence on the magazine.

More on the 6809

It was with some uncertainty that MICRO decided to cover the 6809. I thought that some readers might be upset that MICRO would have anything to do with any microprocessor other than the 6502. So far, all of the response has been positive. Several longtime subscribers have contacted me to say that they discovered the 6809 over the past year, are very happy with it, and are glad to see MICRO cover it. A number of people at the recent Applefest in Boston expressed interest in the 6809 and wondered how it might affect the Apple. A couple of 6809 experts have contacted me about providing articles for MICRO, so there should be a significant increase in the quality and quantity of material in future issues.

I freely admit that I am a novice on the 6809 . To date I have written only one minor program, hand assembled, for the 6809. Therefore, the material that I
am presenting in my series is only to be taken as a basic introduction to the device, as seen through the eyes of a 6502 devotee. The material from the 6809 experts in future issues will cover a wider variety of topics in greater depth. If you are knowledgeable of the 6809, please consider sharing your knowledge with us. I would be happy to discuss possible articles with you by letter or phone.

The more I investigate the 6809, the more I like it. There are little things such as the two-byte addressing which is the natural high-byte/low-byte form (12 34) instead of the reversed form used by the 6502 (34 12). There are more significant improvements such as the 16-bit operations. And, there are major effects, such as greatly increased transportability of code. Since the 6809 does not make special use of page zero or page one, it eliminates one of the major areas of contention that one encounters when trying to make 6502 code general. When I wrote a program to support a video board on the AIM, SYM and KIM, I kept running into problems of page zero and page one usage. Since each machine had allocated different sections of these limited memory resources, it became impossible to find any locations which were universally free. This type of memory contention would simply not occur on the 6809.

Of even greater significance to making code transportable is the 6809's inherent position-independent code capability. There are several companies which offer complete disk operating systems for the 6809 which can be fairly easily adapted to any 6809-based system. Once the particular 6809 -based operating system is installed, a large number of packages are commercially available. These include BASIC, Pascal, FORTH and other languages; word processors, assemblers, editors and other "tools;" and a variety of businessoriented applications. This means that many new 6809 -based computers can be designed and built that can take advantage of common software. This should encourage programmers to write truly universal software packages for the 6809 and perhaps eliminate the "Tower of Babel'" that has evolved within the 6502 world, where almost every program is specific to a single microcomputer.

Letterbox

Dear Editor:

I have both good news and bad news for MICRO readers. The good news is that the 6516 will shortly be available for purchase by the public. The bad news is that it is a 16 K CMOS RAM made by Harris.

Rats!
Hal W. Hardenbergh, President Digital Acoustics, Inc. 1415 E. McFadden, Suite F Santa Ana, California 92705

Dear Editor:
This is a reply to the anonymous letter in the May issue of MICRO (36:16). I am one of those "skinflint,"" "bare-board" KIM-1 users and I think this is a typical reply from all of us "unintelligent," "not-so-serious," "impoverished single-board" users who read MICRO.

Since purchasing my KIM-1 a few years back, for a paltry two hundred and fifty dollars, I have added the following:

Three Memory Plus boards with PROM and RAM
One Mother Plus board
One case for the KIM-1 (no longer a "bare-board'"
Three power supplies
One Micro-Ade package (assembler-disassembler-editor)
One Microsoft 9K BASIC package
One Tiny BASIC package
One printer
Two cassette drives
One ASCII keyboard
One video terminal board
One video monitor
Twelve EPROM chips at $\$ 50$ each
One extended monitor package
One information retrieval package
One logic probe
One stringy floppy or regular floppy (tentative)
One 4800 baud tape interface board
One tape management system package
One subscription to MICRO magazine
One subscription to COMPUTE magazine
One EPROM eraser

I think the Editor of this magazine will recognize a lot of "familiar" products in this list.

My point is this. Before you Johnnie "Appleseeds" and the like shoot off your mouths about us "impoverished, bare-board users," it would do well for you to investigate just who supports the small-user industry.

The products on my list came from various manufacturers, not just one, who all advertise in magazines such as MICRO.

If you want the "Black Box" concept (it doesn't take a lot of intelligence or sophistication to operate a "black box'l that is your business, but don't force your snobbish attitudes on everyone else....

I work with black boxes at work all day long (Data Generals, Harris Slash/7, MACSY M-2, etc.), but after work I want to delve into something a little more challenging and rewarding. In other words, I like to do it "my way."

> A "skinflint KIM-1 user" from St. Louis, Missouri

Dear Editor:

Enclosed is an Apple tip that I think might be of interest to the readers of your magazine. In order to make some types of programs easier to find in your catalog, the type name can be changed to another character. For example, the ' B ' in binary programs may be changed to a 'flashing B^{\prime}. The ' T ', ' I ' and ' A ' may also be changed to any ASCII character. Refer to the Apple manual, page 15, for a table of ASCII characters. Here are the POKEs.

POKE 45191,?
(Change T in text files)
POKE 45992,?
(Change I in integer files)
POKE 45993,?
(Change A in Applesoft files)
POKE 45994,?
(Change B in binary files)
Example:
POKE45994,66 Changes ' B ' in binary file to 'flashing B'

If you initialize any disk after making these POKEs they will have the changes written in their DOS permanently. For a 32 K system subtract 16384 from the above POKEs.

Dean Kay
P.O.Box 3984

Irving, Texas 75061

Dear Editor:

Allow me to relate my experiences with a genuine software thief and his immediate victims. An ad appeared locally offering Apple PIE or Easywriter for $\$ 50$ |vs. $\$ 130$ and $\$ 100$ list price). I called the number given and asked the man if he had VisiCalc, too. He did indeed... for $\$ 40$ (vs. $\$ 150$ list)! He went blatently on to tell me that it was a copy, that I could make my own backup disks and that the documentation was photocopied. "Do you realize," I asked him, "that you're a thief?" A pause... "Yeah," he said. I hung up in his ear.

If you look out your window and see someone picking the lock of your neighbor's car, would you turn away? If you feel a pickpocket's hand in your own pocket, do you just stand there? A software thief is no better than a car thief or a pickpocket. If we, the users and producers of software, prove unable to police ourselves there will surely be someone happy to do it for us. Uncle Sam will have his heavy finger on your keyboard and his beady eye on your disks. We'll all be saddled with yet more Big Brother government, empowered to watch our every software purchase and sale. And who will pay for this watchdog bureaucracy? You will. I will. Every person and company in the United States will pay for it with their taxes. Is that what this thief wanted? Or was he just too stupid to think?

So I phoned Personal Software, Inc., (about VisiCalc) and Programma International (about Apple PIE). (I would have called Easy-writer's manufacturer but I had no company name or phone.) I talked to the highest-ranking managers there and told them of the thief. Both men were shocked. Perhaps these calls
(Continued on page 18)

AIM Memory Map

Abstract

This article describes how a ROM-based assembler works, with detailed instructions for getting at several useful, but undocumented features, including new .OPT functions for the AIM.

Greg Paris
11-2A English Village
Cranford, New Jersey 07016

The AIM 65 assembler was designed by Compas Microsystems |the makers of the AIM monitor) to be a subset of its larger, RAM-based A/65 assembler. In fitting the AIM assembler into a 4 K ROM, several features of the A/65 assembler had to be dropped. What remains, however, is an extremely useful program to be resident in one's AIM, even if it doesn't list a sorted symbol table or count lines of program listing.

I wanted to see if I could extend the AIM assembler's command set through a conveniently-placed zero-page RAM hook or vector. I found out quickly that I could not. But in the process of line-byline decoding, I found many other things of interest - some useful subroutines which can be called from outside the assembler, and several hidden shortcuts and undocumented functions. This article will provide a memory map of the AIM 65 assembler ROM, describe its operation and use of RAM, and detail these undocumented features.

The Assembler Disassembled

Table 1 shows how the assembler is organized into a 4 K block of memory which starts at $\$ D 000$. Most of the lookup tables are found near the upper end of this block, which allows the majority of the program from $\$ \mathrm{D} 000$ to $\$ \mathrm{DD} 4 \mathrm{~A}$ to be disassembled continuously by use of the AIM monitor command " K ". If you do it for yourself, it's best to disassemble only 1 to 2 pages of memory at a time, to prevent your power supply from overheating any more than it usually does.

Table 1: Assembler ROM Memory Map

D000-DODF initialize RAM and setup for PASS 1
DOEO - DOE8 loop to process lines of source code; stack reset each time
D0E9 - D66E SBR - PROCESS a line... includes:
D104 ..get a line from AID; echo to display
D128 ..separate labels from mnemonics and operands
D1DB ..reassign program counter or PC $\left.\right|^{*}=1$
D1E8 ..process an equate ($=1$
D259 ..directive (.XXX) decoding; then jumpindirect to do it
D299 ..encode data as per .BYT, .WOR, .DBY instructions
D346 ..check and assign .BYT data in ASCII literal format
D396 ..decode .OPT XXX; then jump-indirect to do it
D3B3 ..set up directive flag variable (\$37)
D3CC ..do .OPT SYM, NOS, NOC, CNT, and COU: i.e., nothing!

D3D4 ..perform .SKI
D3DE ..perform .END; setup for PASS 2
D414 ..toggle tape recorders while waiting for PASS 2
D43E ..set up FNAME for tape file for PASS 2
D454 ..encode mnemonic/ symbolic address into opcode/operand
D66F - D68F SBR - do list of line and preset ERROR statement; then NEW line
D690 execute . FIL if AID = T or U
D69D perform .PAG
D6CA - SBR - get beginning-ofline pointer, then

D6CE -
SBR - increment line pointer, then
D6D0-D6E7 SBR - get first nonspace character to begin string
D6E8-D71F SBR - get last character in a string; ignore between quotes
D720-D74A SBR - look for), comma, space or end-of-line (EOL)
D74B - D75B SBR - output the buffer to LIST-AOD until quote or EOL
D75C - D767 SBR - carry set if alphabetic character
D768-D773 SBR - carry set if numeric character
D774 - SBR - set $A=3$, then
D776 - SBR - store A as number of characters, then
D778-D796
SBR - transfer characters from text buffer to SEARCH buffer
D797-D8AC SBR-EVALUATE an expression..., includes:
D7B9 ..select low byte of symbol (<)
D7C1 ..select high byte of symbol (>)
D7D4 ..decimal number string
D7DA ..hex number string (\$)
D7E0 ..octal number string
(@)
D7E6 ..binary number string (\%)
\longrightarrow set up to convert to a hex number
[.DBY format)
D7E8 ..get symbol value with SEARCH
D81D ..evaluate current pointer or PC (*)
D858 ..perform 2-byte addition $(+1$
D886 ..perform 2-byte subtraction (-)
D8AF - D8C2 SBR - test flag from EVALUATE for arithmetic error and overflow
(Continued)

There are several directives and 'list" options which are supported by the assembler. The recognition process requires that a list of these commands (in ASCII) be present in ROM to be scanned as necessary. This list, and the action address for each command, are shown in table 2. I noticed that there were more options listed in ROM than I had ever seen described. As I will detail later, there is a new pair of options which are supported - .OPT MEM and .OPT NOM - and several which are recognized [i.e., not rejected outright with "**ERROR 14 "I but simply ignored.

A memory map of any program is only of limited usefulness if its constants and variables are not welldocumented. Table 3 shows how the assembler utilizes zero page RAM, and the functions of most of these addresses, or their contents. In addition to this zero page use, a section of page one, just below the stack area, is reserved for the temporary storage of compiled opcodes and data. Several addresses vie for the most-used-zero-page-address award, but the winners are $\$ 46+$ (the text input buffer starting address), $\$ 35$ (the length of the current line in said buffer), and $\$ 29$ the pointer to the active character in this buffer, a single byte usually stored here from the X register.)

How It Works

The following description will be most informative if the disassembled object code is available, if for no other reason than to see how some of the tricks are accomplished with minimal coding. But it's not absolutely necessary.

All the real work of assembly is directed from the subroutine at \$DOE9 \$D66E, which I've labeled PROCESS. The section immediately preceding this (from \$DOEO - \$DOE8) is a small loop which calls PROCESS each time a new line is to be processed. This loop does only two things: resets the stack pointer, and calls PROCESS. All other subroutines are called from PROCESS.

If it becomes necessary to leave PROCESS because of some fatal processing error, even if the stack pointer is randomly set, there is no problem because exit always occurs after the stack pointer is partially reset. This allows an RTS instruction to return control to the small loop. (See \$D686-\$D688 for how this is done.)

The assembler itself has very few functions: get some text; try to assemble it; check for errors; and output the results. The actual processing is almost as simple as the statement.

Table 1 (Continued)
D8C3 - D8DA SBR - get current character with X register as pointer; also check for end-ofsymbol
D8DB - D8EC SBR - get opcode addend from table D8ED - D94E SBR - base conversion D94F - D955 SBR - test for carry from previously performed add/subtract
D956 - D95D TABLE - constants for base conversion
D95E - D9A1 SBR - SEARCH symbol
table for entry
D9A2 - D9D3 SBR - STORE symbol and value in table
D9D4 - D9E9 SBR - if string = mnemonic, get opcode data
D9EA - DAOB SBR - find mnemonic
DAOC - SBR - set flag for no-error/list-line-only, then
DAOF - DASD SBR - decode error number, select LIST or not
DA5E - DBC6 SBR - LIST a line to LIST-AOD and output OBJ code to OBJ-AOD, followed by **ERROR XX, if needed..., includes:
DA7E ..determine if PC needs to be output
DA90 ..output PC at beginning of line, then
DAAO ..output label if one is present
DAC3 ..recalculate when next PC announcement is due
DADO ..output opcode/operand or data
DB19 ..output rest of line
DB62 ..format quotated strings
DBB2 ..finish output line; return for more data if .OPT GEN selected
DBC7 - DBEC SBR - output an error message and number; increment error count
DBED - \quad SBR - set $A=1$, then
DBEF - SBR - add A to PC, then
DBF8 - SBR - zero A, then
DBFA - DC05 SBR - add PC to A
storing result as
memory deposit pointer
DC06 SBR - output single
DC09-DC28 SBR - output byte as 2 ASCII hex numbers to OBJ-AOD
DC29 - SBR - add opcode to A, then

DC2E - DC4D SBR - output A to memory, or to OBJOUT intermediate buffer
DC4E - \quad SBR - move from intermediate buffer to OBJ-OUT buffer, then
DCA9 - DCB7 SBR - clear OBJ-OUT intermediate buffer
DCB8 - SBR - zero and start OBJ-checksum calculation, then
DCC8 - DCD1 SBR - add A to OBJchecksum
DCD2 - SBR - format and output an OBJ-code record, then
DD02 - DD0C SBR - CRLF to OBJAOD
DD0D - DD4A SBR - format and do last OBJ-record; close tape file
DD4B-DD74 TABLE - assembler directive action addresses (.WOR format)
DD75-DDB3 TABLE - assembler directives and .OPT list, in ASCII
DDB4-DE5B TABLE - mnemonic list, in ASCII, in alphabetic order
DE5C - DE65 TABLE - allowed opcode addends
DE66-DE74 TABLE - look-up index to reference table \$DE75
DE75-DEDD TABLE - look-up legal operand format
DEDE - DF15 TABLE - opcode classification list
DF16-DF4D TABLE - basal opcodes; in same order as mnemonics
DF4E - DFA2 TABLE - messages, in ASCI; each one ends with a semicolon
DFA3-DFA7 TABLE - reserved labels, in ASCII: "AXYSP"
DFA8 - SBR - set up display and monitor with FNAME of .FIL, then
DFCC - DFDC SBR - go get file if AID $=T$ or U
DFDD - DFE8 SBR - print a message; input in $X=$ offset of beginning of message from SDF4E
DFE9 - SBR - output a blank space, then
DFEC - DFF5 SBR - output a CRLF to AOD
DFF6 - DFF9 ??TABLE?? - four unidentified bytes...
DFFA - DFFE SBR - output space to AOD
DFFF
" N " in ASCII: the monitor command to jump to the Assembler

Table 2: Assembler Directive and Option Mnemonics

Location of First Byte	Mnemonic	Action Address (hex)
DD75	BYT	D299
DD78	WOR	D2A1
DD7B	DBY	D29D
DD7E	SKI	D3D4
DD81	PAG	D69D
DD84	END	D3DE
DD87	OPT	D39D
DD8A	FIL	D690
DD8D	GEN	D3B3
DD90	NOG	D3B7
DD93	SYM	
DD96	NOS	
DD99	NOC	D3CC
DD9C	CNT	(unsupported
DD9F	COU	D3BB
DDA2	ERR	D3BB
DDA5	NOE	D3BF
DDA8	MEM	D3C8
DDAB	NOM	D3C4
DDAE	LIS	D3BF
DDB1	NOL	D3BB

Input text is obtained from the AID as specified by the monitor variable INFLG (which also allows input directly from memory) in a loop from \$D104 \$D127. Output, on the other hand, can be two-fold: actual object code |the real reason for using this program, after all) and a formatted assembly listing. These must go to two different devices, and a significant portion of the assembler is devoted to the proper formatting of the listing (\$DA5E - \$DBEC) and to the production of a formatted standard object code (\$DBED - \$DD4A). If the object code is to go directly to memory, no formatting into a record is performed, and the code is merely deposited (at step $\$ D C 3 C$) as per the pointer in \$09/0A.

The assembly itself is done as follows. The input line is first parsed into labels, mnemonics or assembly directives. Any string that does not meet these criteria is rejected with error numbers $3,8,9,10$, or 20 . Directives are processed by the section which starts at \$D259; the jump-indirect to the specific address is taken only after the directive in the text is compared with those commands supported (see table 2) and the proper action address is obtained from the table at \$DD4B. Any errors in this process are called "undefined assembler directives." When a directive has been performed and listed (if desired), exit to the small loop at \$DOEO occurs.

Those strings which are used as symbolic constants or address labels are differentiated from mnemonics by length,
or by a mnemonic scan called from \$D167. Labels may be associated with equates, or with the current program counter address (PC). On the first pass, if the string is legal and not a mnemonic, it is assigned a value and placed in the symbol table with this value by the subroutine called from \$D1CF. If the string is found to be a mnemonic, a branch occurs to that section of the assembler which performs the actual opcode assembly calculations.

The opcode compiler starts at \$D454 and is the heart of the assembler. First the mnemonic is checked against a list in ROM, which starts at \$DDB4. Like the directive list, this list is in ASCI, and is conveniently arranged alphabetically. Then, two new bytes of information are obtained using the position of the mnemonic in the list as an index. The table which starts at \$DF16 yields the "basal opcode." This is a single byte which represents the lowest numeric value of the opcodes allowed for a given instruction, to which a constant determined by the assembler may be added. And the table at \$DEDE yields the opcode classification type. How do these two bytes determine the actual opcode?

If you look at the allowed instruction set for the 6502, you will see that not only does it contain holes (not all instructions use all addressing modes) but there is some pattern to these holes. Various mnemonics can be grouped together by considering which modes are allowed for each. Table 4 shows how this classification scheme is implemented. What the assembler does in the opcode compiling section is to sort out the requested mode, and give errors if this disagrees with those allowable modes obtained from table \$DEDE. Then it evaluates the expression which is the operand (if any) and does the following calculation (more or less):
basal opcode + (addend from table \$DE5C \times factor $\mathrm{Q} \mid=$ opcode for the desired addressing mode.
"Factor Q " is determined when the syntax of the operand is checked. It takes into account such things as whether the address is page zero, or whether the mode is implied, indirect, indexed, etc. If your source code can run this gantlet, it is assembled.

One concept simplifies the control of much of the operation of the assembler - flag variables. Several page zero locations store information which is used repeatedly to direct operations: locations $\$ 21-\$ 23$, and $\$ 36-\$ 38$. Of central importance is the directive flag, $\$ 37$.

Three of its bits are used to store the status of various selected options and allow this status to be tested frequently during assembly. Table 5 details how the bits of this variable are understood by the assembler. This variable will also be of importance later in the discussion of the undocumented .OPT MEM/NOM functions.

There are few differences between PASS 1 and PASS 2. During the first pass, any output is swallowed by the program instead of being directed to the printer or OBJ-OUT device. The symbol table is compiled during the first pass, and is used extensively in the second pass to evaluate expressions. The distinction between each pass is signaled by the PASS $1 / 2$ flag - $\$ 23$.

Undocumented Features

This is probably the section you turned to first! Here I'll describe those assembler functions which haven't been detailed in the AIM manual, including a few shorthand notations, a built-in routine which allows the user to toggle tape recorders on and off while waiting for PASS 2, and several undocumented .OPT functions, especially two which are supported but not described in the manual.

1. I found three shorthand techniques that are allowed by the assembler. First, the indexed indirect addressing mode can be written either as LDA (VAR, X) or LDA (VAR, X with no closing parenthesis. Second, the indirect indexed addressing mode can be written either as LDA (VAR),Y or LDA (VAR)Y with no separating comma. Third, single-byte ASCII literal operands may be denoted in two ways: CMP \#'X' or CMP \#'X with no closing quotation mark. This last shorthand is not explicitly stated in the AIM manual, but it is used as an example on pg. 5-19 (rev $3 / 79$). These shorthand methods save one shifted keystroke per operand. Note, however, that .BYT 'XXXXXXX' still requires a closing quotation mark.
2. If you have ever assembled from a source file on a tape cassette under remote control, you will have noticed one inconvenient operating detail: while the assembler waits to do PASS 2, the remote line shuts off your recorder! Before the tape can be rewound, you have to manually override this control, and, for example, disconnect the remote plug. But no more! The capability to toggle the tape remote control is already a part of the assembler. Here is how it works.

Table 3: Assembler RAM Usage

$(00 \rightarrow 03)$	(not used)
04	number of bytes in data or opcode/operand at SBR
	\$DA0F
(05)	(not used)
06/07	.WOR-temporary storage of program counter (PC)
08	error index at SBR \$DAOF
09/0A	WOR-pointer used to store OBJ code in memory
OB/0C	.DBY-number of entries in symbol table
0D/OE	.WOR-directive action address or SEARCH address
OF	basal opcode stored here
10	opcode classification type (see table 4); or \$E if branch

11/12 .WOR-symbol counter for SEARCH
13/14 .DBY—value of symbol; or workspace for * assignment
15 + or - sign for EVALUATE
16 same as 04, but maximum value allowed is $\$ 14$
17/18

19 number of bytes in completed .BYT ASCII literal string; or flag for formatting quotated material for LIST
1A/1B .DBY-number of errors in PASS 2
allowable operand coding key

1E

1F
20 flag: "this line contains a label"
21 flag:"* ${ }^{\prime \prime}$ "
22

23
24

25

26 number of characters in string
27/28 .DBY-output of
EVALUATE = value of expression
29 pointer to active character in buffer
$2 \mathrm{~A} \rightarrow 2 \mathrm{~F} \quad$ string storage for comparison by SEARCH
30 number of bytes compiled at SBR \$D66F et al.
31 stored error number at SBR \$D683

$32 / 33$

 here0170-0183 intermediate storage buffer of compiled object code

Assume that PASS 2 has been displayed, and that the assembler is patiently waiting for you to press "space" to initiate the second pass. Instead of "space", press " 1 " or " 2 ", depending on which line is connected to your recorder. Voila, your recorder is now running. Rewind to the start of the file, toggle " 1 " (or " 2 ") again if you wish, start the recorder, and then press "space" on the keyboard. It's as easy as that.
3. Now to the undocumented options. You may have noticed in table 2 that several assembler mnemonics were unfamiliar. Indeed, MEM and NOM are supported, and I'll discuss them in the next paragraph. But the options SYM, NOS, NOC, CNT, and COU, while recognized, are not supported. Their
action addresses direct processing to null place in the program so their incly sion doesn't crash the assembly, bu merely is ignored. I assume that thes are fossils which remain from the corr mand set of Compas Microsystem' larger A/65 assembler. With tha assumption, some of their functions ca: be guessed at: SYM/NOS toggled th printing of a sorted symbol table NOC/CNT probably determine whether each line of the formatte assembly listing was sequentiall numbered; and COU probably set th number of lines per page. Note tha there is room in the directive fla variable for, at most, 5 more statu toggles than are used by the AIN Assembler.
4. .OPT MEM / .OPT NOM doe work, however. Its syntax is like that o other .OPT commands, and the option determines the status of bit 3 in th directive flag. (See table 5.) This option allows the user, for whatever reasons, t_{1} choose exactly when and where th object code will be directed durin; assembly. As with other options, use o an .OPT command overrides thos parameters determined during th. initialization dialog. But this mean that if .OPT NOM is to be user somewhere in the source text, the use must reply " Y " to "OB)?" during th dialog, and then specify the OBJ-OU] device to insure that the OBJ-OUTFLC will be determined before it is needed Thereafter, .OPT MEM and .OPT NON will allow object code to be directed to this device as desired during assembly o the source program.

I have even found a few usefu subroutines that can be called from out side the assembler. Some of these ar described in detail in table 6. I especiall! like the subroutine which converts fron multiple base systems to hex notation Although it cannot be incorporater directly into a USR function and caller from a BASIC program because of zerc page RAM conflicts, the concept can bi used by anyone to provide a simple basi conversion function in BASIC.

Finally, a word of warning to any reader who may want to relocate thi assembler. Disassembling this progran into a source file cannot be done blindly Various changes must be made manual ly. These are summarized in table 7. I these suggestions are followed, any planned reassembly should proceec smoothly.

Table 4: Opcode classlfications from table sD9DF

Table Entry	Class of Opcodes

Greg Paris has been doing postdoctoral research in neurobiology, and has turned his hobby into a job - as Senior Applications Specialist at Merck Pharmaceutical Co. He interfaces between the research scientists and the programming and design staff.

NCRO

Table 5: Dlrective Flag Varlable (\$37)

Bit	Used For	. OPT If	
Number		Bit Is SET	Bit Is CLR
7	generate complete data for .BYT command?	NOG (no)	GEN (yes)
$\left.\begin{array}{l} 6 \\ 5 \end{array}\right\}$	(not used)		
4	output a complete assembly listing or errors only?	$\left\{\begin{array}{c} \text { ERR } \\ \text { NOL } \\ \text { (errors } \\ \text { only) } \end{array}\right.$	$\left\{\begin{array}{l} \text { NOE } \\ \text { LIS } \end{array}\right\}$
3	object code to memory	NOM (no)	MEM (yes)
$\left.\begin{array}{l}2 \\ 1 \\ 0\end{array}\right\}$	(not used)	仡	

Table 6: Useful Subroutines: I/O formats, RAM and register usage.

SBR entry address	Function	Input	Output	Flags upon exit	Registers altered	RAM used, including that of called SBR's
D797	EVALUATE an expression	pointer to beginning of expr in $46, X$	value in 27/28 (if done)	test \$38	AXY	13/14
				.and.		1516
				$\mathrm{Y}=0,1$ or 2		17/18
				0 : not done		27/28
				1: no symbol		32/33
				found		353638
				2: OK		82/83
D8ED	BASE conversion	pointer to beginning of string in 46,X	hex value in 13/14	SEC if OK	AXY	13/14
				CLC if not		$1617 / 18$
				possible		35 82/83
				$\begin{gathered} \text {.also. } \\ \text { test } \$ 38 \end{gathered}$		38
D95E	SEARCH for symbol table entry	label in $\$ 2 \mathrm{~A}+$	value in 13/14, if found	SEC if OK	A Y	OB/0C
				CLC if not		11/12 13/14
				found		$2 \mathrm{~A}+$
						3A/3B
						-3C/3D
D9A2	STORE symbol and value in table	value in	none	if no room,	A Y	OB/0C
		A/MSB and		Assembler		13/14
		Y/LSB		auto-		3C/3D
		symbol in		matically		3E/3F
		\$2A+		restarts		

Table 7: Disassembly Precautions

Location (Hex)	Content	Status
D956-D95D	position-independent data	no change necessary
DD75-DFA7 DFF6-DFF9		
D000-D955	program segments	although relative branches remain intact, all absolute addresses in the range \$D000-DFFF must be changed
D95E-DD4A		
DFA8-DFF5		
DFFA-DFFE		
DD4B-DD74	action addresses for directives (.WOR) these are MSB/LSB bytes of position-dependent address used as input to SBR \$D9EA in registers A and Y	all must be changedchange LDA\#
D27C-D27F		
D3AA-D3AD		
D9D4-D9D7		and LDY\#
		operands to
		reflect new addresses

for ATARI® • APPLE® • PET® • and other Microcomputers at SUPER DISCOUNT PRICES!

ADYENTURE INTERNATIGNAI

a ADVNTURE HINT SHEE

 $\begin{array}{lll}\square \text { ADVENTURE } & (1,2,3) & \text { (D) (AP) } \ldots \ldots \ldots .35 .95 \\ \text { AADVENTURE } & (4,5,6) & \text { (D) (AP) } \ldots \ldots \ldots 35.95\end{array}$

AUTOMATED SIMULATION
775.00
775.00
375.00

ATARI 800 COMPUTER ATARI 400 COMPUTER PHYSICS (AT)......
GREAT CLASSICS

QUALITY SOFTWARE

ASTRO APPLE (AP) $\because \ldots, \ldots \ldots \ldots$

RYN [D,C]			
RYN [0,C) (AP)			
Q MORLO			
RIGEL [C,D]			
$\square \mathrm{RIGEL}$ IC] (P)			
HELLFIRE			

ATARI ASSEMBLER

- BATTLESHIP COMMANDER (AP) - BATTLESHIP COMMANDER [D] (AP) \square FASTGAMMON [DI (AP) FASTGAMMON (AP,AT).... F FRACAS ADVENTURE - FRACAS ADVENTURE LINKER (AP) (O] TANK TRAP (AT) [DD] TARI TREK (AT) FORTH (AT) [D].

PERSONAL SOFTWARE \square CCA MGMT [D] (AP) [D] (Ä) OPESK TOP PLANNER
ZORK [D] (AP).... Q ZORK [D] (AP) \quad MONTY MONOPOLY

INSTANT SOFTWARE

O AIR FLIGRT SIMULATION

 APPLEFUNCASINO (P) - CASINO (P - PADDLE FUN (P) [D] (AP)
 - SAHARA WARRIOR (AP) SAHARA WARRIOR (AP)
SKY BOMBERS (AP) [D] SPACE WARS (AP)

STRATE EIC SMULATIONS

- COMPUTER AMBUSH [D] (AP) C COMPUTER BISMARCK ID] (AP) - COMPUTER NAPOLEONICS (D) (AP) - COMPUTER QUARTERBACK [D] (AP) - AIR COMBAT (D) (AP). - WARP FACTOR [D] (AP) C CUTHROATS \& CARTELS [D] (AP) O OPERATION APOCALYPSE [D] (AP) s!:-10G1F

MICROSAFT SOFTMARE

 D AOVENTURE [D] (AP) O OLYMPIC DECATHALON \square TYPING TUTOR Z TYPING TUTOA Z-80 SOFTCARD\square 16k RAM BOARD

17.95 .17 .95 1795 17.95 .17 .95 .17 .95 .26 .95 .35 .95 .35 .95

.10 .55

10.55 13.55 17.95 17.95 22.50 17.95 | 13.55 |
| :--- |
| 17.95 |
| 1750 | 17.95

22.50 17.95 | 17.95 |
| :--- |
| 17.95 | 22.50 44.00

10.55 | 10.55 |
| :--- |
| 13.55 |
| 10.55 | 13.55

10.55 10.55
13.55 72.00

MUSE COMPANY

ABM LD] (AP) $\because(A P) \cdots \cdots$
BESTOT OF MUSE [D] $(A P)$.
BESTOF MUSE (D] (AM).
GLOBAL WAR [D] (AP).
Q SUPER TEXT IURE MLE ISLAND [D] (AP)
O U-DRAW II (D] (AP)...
tribis
$\begin{array}{ll}\square \text { IRIDIS } 1 & \text { (AT) } \\ \square \text { IRIDIS } & \text { (AT) } \\ \text { IRIDIS } 2 & \text { (AT) }\end{array}$
IRIDIS 2
IRIDIS 2
(AT)
(AT)
EDU-WARE

\square NETWORK (AP) [D]
\square PRISONER (AP) [D]
SPACE (AP) [AF] [D]...

PROGRAMMA

\square EXPAND-A-PORT (AP)
JOYSTICK (AP)......
D WPS STANDARD (AP) [D]
HAYBEN
S SARGON II (AP)
[D]...
ARTSCI
MAGIC WINDOW [D] (AP)

If you don't see it listed, write...we probably have it in stock!

DIGIBYTE SYSTEMS CORP.
31 East 31st Street, New York, N.Y. 10016 Phone: (212), 889-8975

Function Input Routine for Applesoft

Abstract

Applesoft permits the identification of a function through the use of the DEF FN command. This article describes a self-modifying subroutine which allows function Input during program execution.

Roy E. Myers

William G. Miller III
The Pennsylvania State University
New Kensington, PA 15068

Software which accepts user-defined functions frequently receives them by giving the user the instructions such as

TYPE
10 DEF FN $F(X)=$
(YOUR FUNCTION)
(RETURN)
THEN TYPE
RUN 10
(RETURN)
This procedure is made necessary by the fact that Applesoft makes no provision for function input. How much simpler for the novice user to be asked:

$$
\text { ENTER } F(X)=
$$

The program below allows this approach. The procedure receives the function as a string, then "transfers" the string to a line at the end of the program (line 5330), which initially reads

5330 DEF FN F $(X)=$
The "transfer" must take into account the following:

1. In a string, the characters ${ }^{*},+,-$, $1,=, \wedge$ are represented by the ASCII character codes $42,43,45,47,61,94$ (decimal). But, in a function the arithmetic operators ${ }^{*},+,-1,=$, \wedge are represented by the decimal codes 202, 200, 201, 203, 204. [See the Applesoft Reference Manual, pages 121, 138, 139.)
2. In a string the characters SN are stored as $83,73,78$ (decimal), whereas in a function SIN is represented by the decimal 233. A similar state of affairs exists for LOG, SQR, TAN, etc.

These cases are handled in lines 5080-5230. After translation, the appropriate code is POKEd into the function definition by line 5260 . When the entire string has been transferred, line 5290 POKEs the code for ":" and the code for "RETURN".

10 LOMEM: PEEK (176) * $256+$ PEEK (175) +256	
20 I	INPUT "ENTER $\mathrm{F}(\mathrm{X})=$ "; F \$
30 G	COSUB 5000
100	Rem
200	REM
300	REM PROGRAM
400	REM BODY
500	REM GOES
600	REM HERE
700	REM
800	REM
4999	END
5000	FINI $=$ PEEK (176) * $256+$ PEEK (175) - 4
5010 FỌLD $=$ FINI	
$5020 \mathrm{~L}=$ LEN (F\$)	
5030 STR $=$ PEEK (112) * $256+$ PEEK (111)	
5040 FOR Q $=1$ TO L	
$5050 \mathrm{~A}=\mathrm{PEEKK}(\mathrm{STR}+\mathrm{Q}-1)$	
$5060 \mathrm{~B}=$ PEEK $($ STR +Q$)$	
$5070 \mathrm{C}=\operatorname{PEEK}($ STR $+\mathrm{Q}+1)$	
5080 IF A $=42$ THEN $\mathrm{A}=202$	
5090 IF $A=43$ THEN $A=200$	
5100 IF $A=45$ THEN $A=201$	
5110 IF $A=47$ THEN $A=203$	
5120 IF A $=61$ THEN $A=208$	
5130 IF A $=94$ THEN $A=204$	
5140 IF $\mathrm{A}=83$ AND $\mathrm{B}=71$ ANL $\mathrm{C}=78$ THEN $\mathrm{A}=210$: GOTO 5250	
5150 IF $\mathrm{A}=73 \mathrm{AND} \mathrm{B}=78 \mathrm{AND} \mathrm{C}=84$ THEN $\mathrm{A}=211$: GOTO 5250	
5160 IF $A=65$ AND $B=66$ AND $C=83$ THEN $A=212:$ GOTO 5250	
5170 IF $A=83$ AND $B=81$ AND $C=82$ THEN $A=218:$ GOTO 5250	
5180 IF $\mathrm{A}=76 \mathrm{ANL} \mathrm{B}=79 \mathrm{AND} \mathrm{C}=71$ THEN $\mathrm{A}=220$: GOTO 5250	
5190 IF $A=69$ AND $B=88$ ANL $C=80$ THEN $A=221:$ GOTO 5250	
5200 IF $\mathrm{A}=67 \mathrm{ANL} \mathrm{B}=79$ ANL $\mathrm{C}=83$ THEN $\mathrm{A}=222$: GOTO 5250	
5210 IF $\mathrm{A}=83 \mathrm{ANL} \mathrm{B}=73 \mathrm{AND} \mathrm{C}=78$ THEN $\mathrm{A}=223$: GOTO 5250	
5220 IF $\mathrm{A}=84 \mathrm{AND} \mathrm{B}=65$ ANL $\mathrm{C}=78$ THEN $\mathrm{A}=224$: GOTO 5250	
5230 IF A $=65 \mathrm{AND} \mathrm{B}=84 \mathrm{AND} \mathrm{C}=78$ THEN $\mathrm{A}=225$: GOTO 5250	
5240 GOTO 5260	
$5250 \mathrm{Q}=\mathrm{Q}+2$	
5260 POKE FINI,A	
5270 FINI $=$ FINI +1	
5280 NEXT	
5290 POKE FINI,58: POKE FINI + 1,177	
5300 POKE FINI + 2,0: POKE FINI + 3,0: POKE FINI + 4,0: POKE FINI $+5,10$	
5310	POKE FOLL - 10, (FINI + 3) / 256
5320	POKE FOLI - 11,FINI + 3-256 * PEEK (FOLD - 10)
5330	LEF $\mathrm{FN} F(\mathrm{X})=$

Before a user identifies a function， line 5330 reads：

5330 DEF FN F $(X)=$

If a user defines the function to be $2^{*} \mathrm{X}^{*}$ $\mathrm{SIN}(\mathrm{X})$ ，the program changes line 5330 to read：

5330 DEF FN F $(X)=2^{\star} X^{*}$ $\operatorname{SIN}(X)$ ：RETURN

The remainder of the program con－ sists of housekeeping chores．Set LOMEM high enough to allow room to input the function（line 10）．Since an in－ put line is no more than 256 characters， LOMEM could be set to end－of－program +256 ．

The function is transferred from string storage to the DEF FN $F(X)=$ statement．Line 5030 identifies the beginning of string storage．The most recently defined string will begin at this location．The DEF FN $\mathrm{F}(\mathrm{X})=$ statement is at the end of the program and it is there that the program will POKE the code for the function．Line 5000 iden－ tifies the end－of－program memory loca－ tion．It is necessary to subtract 4 from the actual end－of－program，in order to write over the end－of－program and end－ of－line code．Line 5300 replaces the code．

In the memory locations preceding a program line Applesoft inserts a pointer to the beginning of the next line．Since additional code is being POKEd at the end of line 5140，the pointer preceding the line is incorrect．Lines 5310,5320 reset the pointer so that it points to the end－of－program code．

The program segment 5000－5140 may be re－used several times within a program to re－enter the function，since the end－of－program pointer stored at locations 175 and 176 are not changed by the program．

Since the user of a program which in－ cludes this procedure may mis－type the function（e．g．leave out a＂＊＊＂for multiply），the programmer may wish to have an appropriate ONERR GOTO statement before the first usage of the function．

> Roy E．Myers is Associate Professor of Mathematics at The Pennsylvania State University，New Kensington，PA．His work with the Apple II is primarily concerned with computer graphics as an instructional tool in mathematics．

William G．Miller III is currently a programmer at Penn State，writing accounting programs for classroom instruction．He is also investigating the possibilities of opening a computer services business．

Vector Calculations with a Microcomputer

Abstract

Many physics and engineering problems Involve the use of vectors. Unfortunately the required calculations are often tedious and susceptible to errors. Thls microcomputer program, compatlble with PET, OSI, and Apple systems, speeds the process, and avoids costly errors.

Peter A: Koski
144 Delaware Avenue
Apartment F
Troy, New York 12180

At an engineering school, a myriad of problems are continually being solved. Most are examples of real world situations. Whether they be differential equations expressing some complex rate of change (world population growth, for example), or the moment of an applied force on a supporting member (engineering design), these are real problems. In solving these, the computer can be used as a very powerful tool. Programs used for problem-solving don't need to be masterpieces of structured programming, they only need to speed arrival at an answer.

In many cases, answers are only good approximations - very good when using the computer. For example, when trying to find a root of a polynomial equation, Newton's method is often used. This method involves refining an "educated" guess. Using a small program, many iterations may be made in a small fraction of the time it would take to manually make one refinement.

Definite integral problems in mathematics may be very well approximated by giving $d x$ a very small finite dimension and summing along the given interval. Without the machine, this couldn't be done, as many hundreds of calculations must be made.

Figure 1: Showing \vec{F} and \vec{r} as their components. (Note: not to scale.)


```
1105 FFINT
1110 FFIHT"YEGTQRE IISED E'O THIS FFOMFHN AFE"
1115 FRINT "REFEFEEL TG E'r NSEF-NEF IHED"
1120 FFIHT "HFNES. FRO',STOH HFE ELEN HIHLE"
1130 FFIHT"FOR 15 HHIQUE YEGTGFS."
1149 FFIHT
1150 PRINT"VECTGRS MUST EE DEFIHED TO THE"
1160 PRINT"PROGRAM PRIOR TO FH'Y' CFLLCULATIOHS"
1165 FRINT"INVOLVING THEIA. DEFINED VEGTGRS"
1170 FRINT"IMR't' BE REDEFINEG IMFLICITL'r' GR"
1180 PRINT"EXFLICITLY."
1190 PRINT
1191 PRINT"KE'Y WORDS;'S'MGBLLS AFE RESER'%ED"
1192 FRINT"FOR FROGRRM USE RNDI THEREFORE"
1193 PRIMT"MR'' HOT RPPERR EIIREDOED OR RLONE"
1194 PRINT"IN A VECTOR LABELiLIST, DELETE,"
1195 PRINT" K, ,(PERIOD), 人, +, -, =."
1196 PRINT:PRINT"PRESS AN' KE'Y TO CONTINLE"
1197 GETZ*sIFZ$=""THEN1197
1198 PRIHT"$"; &REM CLEAR SCREEN
12gQ PRINT"OPERATIOHS SUFPORTED / FORMAT :"
1210 PRINT
1220 PRINT"*VECTOR DEFINITION -- LABEL=\ノJ,K"
```

In all branches of science and engineering，vectors are often used in problem solving．A vector is a three－ dimensional line of force，having both magnitude and direction．By defining forces，velocities，displacements，etc．， as vectors，certain relationships may be easily developed and solved．Vectors are most often expressed in terms of their \mathbf{x} ， y ，and z components．

Often，developing the vectors and vector equations can be time consuming enough without having to grind through the arithmetic to the final solution． That is the purpose of the program presented here．

VECTOR is a command－line pro－ cessor which allows the user to define and operate on vectors．Program com－ mands allow the user to DEFINE（enter vector and its label），DELETE（remove a vector from the work file），LIST（print a list of all vectors in work file），or CLEAR all vector definitions from the work file．

Operations available are addition， subtraction，dot products and cross pro－ ducts．Operations producing a resultant vector add the new vector＇s definition to the working file．If a previously－defined vector is specified as the resultant label， the vector will be re－defined and its previous value is lost，but the program will inform you of the redefinition．

Looking at an example，consider finding the moment（torque）of a force acting on a point．From mechanics，the moment，M ，about point，P ，is equal to the vector locating the force，crossed with the vector defining the force： $\vec{M}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}$ ．Referring to figure $1, r$ may be expressed as $(3,4,7)$ and F as $(2,4,-1)$ ． The solution is arrived at，long－hand，by establishing a matrix and solving it． Alternately，the VECTOR program may be employed as follows（see sample run）：
$\begin{array}{ll}\text { 1．} R=3,4,7 & \text {（define vector } \vec{r} \mid \\ \text { 2．} F=2,4,-1 & (\text { define vector } \vec{F}) \\ \text { 3．} M=R X F & (\vec{M} \text { is defined as } \vec{r} \\ \text { cross } \vec{F})\end{array}$
As is seen，the output produced is the desired moment vector as well as the angle between the two original vectors．

Many time－consuming mistakes are eliminated by avoiding the long－hand arithmetic solutions．

Peter Koski is a sophomore at Rensselaer Polytechnic Institute majoring in Biomedical engineering and minoring in Computer Systems engineering．Most of his work is on an OSI Challenger 2－4P mini floppy system．Pete enjoys integrating hardware and software in optimizing his system．

```
1230 PRINT
1240 PRINT"*LIST DEFINED VECTORS -- LIST"
1250 PRINT
1254 PRINT"*DELETE VECTOR -- DELETE LRBEL"
1256 PRINT
1258 PRINT"*CLEAR RLL YECTORS -- CLERR"
1259 PRINT
1260 PRINT"*DOT PRODUCT -- LABEL1.LABEL2"
1270 PRINT
1280 PRINT"*CROSS PRODUCT -- RESULT=LRBEL1%LFGELZ"
1290 PRINT
1293 PRIHT"*RDOITION -- RESULT=LAREL1+LABEL2"
1294 PRINT
1390 FRINT"*SURTRACTION -- RESULT=LRBEL1-LAREL`"
1310 PRINT
1315 PRINT"HO EMREDDED ELANKS RRE PEPMITTED IH"
1320 PRIHT"COMMAND LIHES «EXCEPT FOR [IELETE,"
1322 PRINT
1324 PRINT"LAREL, LABEL1, LABEL2, RESILT"
1326 PRIHT"REFER TO USER-DEFINED VECTOR NRMES."
1330 REM
1340 DIM LBL$(15),I(15),J(15),K(15)
1350 LBL=0
```



```
13P0 DEF FNC(X)=ATH(SQR(1-xt2)\(x)
1375 DEF FNS(x)=RTH(x)SQR(1-xt2) )
1380 DEF FND(从)=57.2953795%%
1409 REM
1410 REM PROCESS COMMAND LINE
1420 REM
1440 PRINT:INPUT LF&*
1450 IF LN$="" THEN FRIHT"J":CLR:END
1460 REM
147Q REM CHECK FOR LIST ' CLERR % DELETE COMMRNLIS
1480 REM
1490 IF LN$="LIST" THEN 50日0
1500 IF LN $="CLERR" THEN CLR: GOTO 1336
1510 IF LEFT*(LN$,6)="DELETE"THENT1$=RIGHT$(LN$.LEH<LHF)
        G0T06a@G
1520 REM
1539 REM SCRN FOR IMPLICIT OR EXPLICIT GEFINITOH
154E REM OF VECTOR
1550 REM
1560 FORI=1 TO LEN(LN$)
1570 T$=MID$(LN*,I,1)
1580 IF T$="," THEN 160日
1585 NEXT I : GOTO 1PQM
1590 REM
160日 REM EXPLICIT DECLARATION OF YECTOR ; DOT FROOUCT
1610 REM
1620 T1$=""
1630 FGR I=1 TO LEN<LN*)
1640 T年MID$\LN$,I,1)
1650 IF <T$="=")OR<T$=".")THEN OP$=T$: GOTO 1E,0
1655 T1%=T1%+T*
1660 NEXT I
1665 GOTO 9030
16P0 T2$=RIOHT$(LN*,LEH\LLHF)-I)
1680 GOTO 1900
1700 REM
1710 REM IMPLICIT DECLRRATION OF VECTOR
1720 REM
1730 RVL$=""
1740 FORI=1 TO LEN<LN$\
1750 T$=MID*\LN$,I,1)
1760 IF <T$="=">THEN 1810
1770 RVL$=RVL$+T*
1780 HEXT I
1790 GOTO 9030
1890}\mathrm{ REM
1810 REM FSSIMILATE T1$
1820 REM
1830 T14=""
1840 FOR J=\I+1) TO LEM(LN$)
1845 T $=MID$(LHF*,J,1)
```


1855 T1妻＝T1索＋T：
1864 HEXT J
1865 PRIHT＂事 ERROR：IH COMMATH LINE＊＂：GOTO 1449

190 REM
1910 REM TLMF TO ROUTINE FOR REQUIRED OFERATIOH
1920 REM
1930 IF OP $=$＂$=$＂THEN 20n日
1940 IF OP $\$="$＂THEN 3BAB
195日 IF OP
1960 IF OF $={ }^{5}=$＂+ ＂THEN 7060
19ア0 IF OF $\$="-"$ THEN Eiane
2000 REM
2010 REM STORE LABEL AHO COREESPOHOING I／IAK vRLUES
2020 REM
2030 FOE $1=1$ TO LBL
20135 IF LBL
2040 PRINT＂＊＂：Ti丰：＂RE－DEFIHED＊＂
2045 GUTO 21日9
2050 HENT I
2052 IF LBL 615 THEN 2060
2055 GOTO 96440
2057 GOTO 1449
$2060 \mathrm{LBL}=\mathrm{LBL}+1$ ：I＝LBL

2110 FOF J＝1 TO LENCT2事

$215 \mathrm{C}^{2}$ HEXT J
2155 PRINTJ
2160 FOR $K=(J+1)$ TG LENGTE\＄）

2180 IF T\＄＝＂＇＂THEN＇r＇＝VAL（＇ris）：GOTO 221日

2200 HEXT K

2220 REM
2230 REM
DEFIHE VECTOR
2240 REH

2260 GOTO 1440
3000 REM
3010 REM
ROT FPODLICT CRLCULATIOH
3020 REM
3030 FOR $1=1$ TG LBL
3040 IF LEL\＄（I）＝T1年 THEH 3060
3050 NEKT I
3055 T0\＄＝T1\＄：00T09060
$3669 \quad 11=I(I): U 2=J C I): U 3=K(I)$
3070 FOR $J=1$ TO LEL

3090 NEXT J

$3110 \quad 41=1(J): \quad V 2=J(J), ~ Y 3=K(J)$

$3140 \mathrm{U}=\mathrm{SGR}$（U1＋2＋LI2个2＋U3＋2）
$3150 \quad v=$ SGR（V1t $2+v 2+2+63+2)$
3160 PRINT
3170 PRINT T1\＆＂DOT＂：T2\＆：＂＝＂BFNT（UY）

3200 GOTO 1440
4000 REM
4010 REM CROSS PROLIITT CALCULATION
4920 REM
4030 FOR I＝1 TO LBL
4040 IF LBL $\$(I)=T 1$（THEN 4860
4050 NEXT I
4055 T0\＄＝T1＊：00r09060
$4060 \mathrm{U}=\mathrm{I}(\mathrm{I})$ ：U2 $=\mathrm{J}(\mathrm{I})$ ）U3 $=\mathrm{KK}(1)$
4070 FOR $J=1$ TO LBL

＊Requires 48 K Apple II or II＋，single Disk
 ＊Exceptionally compact，compiled code Software development time cut in half High－speed，extendeci high resolution graphics Auxiliary Processor［AM 9511］for fast Floating Point Programming capabilitles well beyond Applesoft ＊Runs six to sixty times fastor than Basic

กONU7 77

ロกロNVา

E S

sss

 \qquad

өouem code and hardware arithmetic processing pelldmos to stifeueq oul seulquos GヨヨdSonolu ＇HIBO』 jo Uolsian pepuejxa ue wois pedopened ヨาdd 3 IL yO WヨI

（Continued from page 6）

were a first．Then they were pleased， very pleased．They thanked me pro－ fusely and said they＇d do something about the thief immediately．Good！ One pirate down（perhaps）and hun－ dreds，at least，to go．

How many people，however，are afflicted with an ethical standard that makes them pay $\$ 125$（the lowest， legitimate discount price I＇ve seen for VisiCalc）when they could get the pro－ gram for $\$ 40$ ？How many moral deci－ sions can be bought for $\$ 85$ plus tax？As long as a conscience can be bought for that or less，there will be software thieves popping up like spiders in spring．

I offer a proposal，then，to cut the feet from under the pirates．I challenge software manufacturers to stop the thieves as they start，before＂protec－ tion＂is forced upon us all．They can do it．I can＇t．Let each software manufac－ turer reward the first person reporting a software thief with a free，legitimate copy of the program being stolen or another of equivalent value．Then let the manufacturer＇s lawyer obtain a court injunction，at the least，against the thief＇s sales．A software buyer would then have a real incentive to keep the business honest．A software manufacturer would make a profit if he could prevent the thief from selling but one or two pirated copies．A software magazine would be able to devote its editorial page to technical rather than legal problems．A software thief would have to find a way to tum an honest buck and sleep better for it．Above all， each and every one of us would keep our taxes from going up still more and would retain a free－market economy in computer software；that，my friends， would keep all our costs down．

Let us not forget the user while we＇re protecting the manufacturer． Yes，we do need better service and sup－ port．Yes，we do need backup copies for our personal use．Yes，we do need the information to customize our pro－ grams．Yes，we do need lower cost soft－ ware．But software piracy will cost us all more in the long run，both in dollars and in freedoms．We can stop it here． And now．

I have asked this magazine not to print my name or location．This is not because I don＇t sign up to what I say． Instead，I fear reprisals from thieves．If you feel that you must deal with a soft－ ware thief，remember this advice of－ fered me by a police detective．All thieves，when thwarted，readily turn to murder．

Anonymous
（Continued on next page）


```
7260 GOTO 9040
    P27G GOTO 1440
    3295 LBL=LBL+1: I=LBL: LEL&CI%=RUL年
    73014 I(I)=01+V!
    731日 T(I)=(12+V2
    7324 K(I) = 13+43
    P3:3 FRINT
```



```
    7350 GOTO 1440
    80ER REM
    BE1Q REI VECTOR SUETRFICTIOH
    8020 REM
    Ba30 FOR J=1 TO LEL
    8040 IF LBL$(J)=T1% THEN 8080
    B050 HEST J
    8066 T0%=T1事:GOTO SQ6g
    8080 U1=I\J): U2=JくJ): U:=K\J)
8090 FOR K=1 TO LEL
8104 IF LEL年K)=T2% THEH 8130
8110 HEST K
8120 T0%=T2क:G0TO 90604
8134 Y1=ICK): V2=JKK): VB=KCK)
8150 FORI=1 TO LEL
B16日 IF LEL事(1)<RUL重 THEN B190
8170 60SUE 9070
8180 GOTO 8250
8190 HEXT I
B200 IF LBL<15 THEH S24%
8210 GOTO 90140
8220 GOTO 1440
8240 LEL=LEL+1: I =LBL: LBL4\I \=RWL*
8250 I (1)}=||\mp@code{\
3260 J(I)=42-V2
827@ K(I)=013-V3
828G FRIHT
```



```
830日 GOTO 1440
90日G REM
9010 REM MESSAGES
9020 REM
9030 PRINT"娄 ERROR IH COMMAND LINE *":GOTO 1440
9040 PRINT"* DEFINITION SFRCE EXCEEDED *"
9050 PRINT"* DELEETION REGUIRED *":GOTO 144G
9060 PRINT"* ":TOF:" HOT IN WORKING FILE *":GOTO 1440
9GP0 FRINT"* ":RYL音:" FEDEFIHED *":RETURH
```



```
1197 FOKE 5FQB8,0: IF FEEK\57GBB)=255 THEN 1197
3130 FOR I=1 TO 24: PFIHT: HEXT I
```



```
10010 GOSUB 9130
1197 FOKE 5POBQ.25S: IF FEEK\ST日88)=1 THEN 1197
1198 G0SUB 9130
14500 IF LN事="" THEN GOSLIB 91SO: ILEFFR: EHD
Э10G REM CLEAR SCREEH--
9110 REM YOU MF'T' HISH TO USE 'NOUR
9126 REM OWH MRCHIHE LFHGLIAGE ROUTINE
9130 FOR I=1 TO 32: FEIHT: NENT I
9140 RETURH
```

```
FFFLE MEIEIFIEMTIMF
1B010 CRLL -936: REM CLEAR SCREEN
1198 CALL -936: REM CLEAR SCREEH
```


consunner compurers mail order

OPEN EVERY DAY 9 to 6 PST
California, Alasko G Foreign orders
Shipping information or Bockorders call
Sevice Center and for Technical Information
(714) 698-8086
(714) 698.0260
(714) 460-6502

ORDER TOLL FREE 800-854-6654

Gpple conpuler

ALL EQUIPMENT IS FCC APPROVED

Atari 40016 K
810 Disk Drive
410 Progrom Recorde
850 Interface Module.
822 Thermal Printer (40 co
825 Printer (80 col)
Atari 16 K Rom Module.
Atari 16 K Rom
Acori Light Pen
We stock aH Atarl occessorles 6 software, please call for more info.

PRINTERS

Anadex DP. 9500 W/2k Buffe
1375
Anodex DP-9501 W/2K Buffer
C. Itoh Starwriter 25 CPS.
C. Itoh Starwriter 45 CPS. Centronics 737
Epson MX-70 W/Grophics
Epson MX-80 132 Col.
Paper Tiger IDS-445 W/Dot Plor.
Paper Tiger IDS-460 W/Dot Plot.
Poper Tiger IDS-560 W/Dor Plor.
Qume Sprint 5/45 Daisywheel.
Silentype w/Interfoce for Apple ii. Wotanabe Digiplat.

YIDEO MONITORS

Amdex/Leedex Video-100 1.2" BGW

 Hitachi $13^{\prime \prime}$ Color NEC $12^{\prime \prime}$ P31 Gree. Ph.................... . 389 NEC 12" P31 Green Phospher. CALL Ponocolor $10^{\prime \prime}$ Colorsanyo 9" OGW
Sanyo 12" BGW
Sonyo 12"P31 Green Pho...................... 25
Sanyo 13" Color. 445

Chailenger 4 P
C4PMF (Mini Floppy System) 1599
CIP Model II449

Sargon II (Disk or Cassette). .. . 35
Fig Forth (Disk Only)09

APPLE SOFTWARE

DOS Toolkit.
Appleplor. .
Appleplor. .
Tox Pionner
Apple Writer
Apple Post
D.J. Portolio Evoluotor
D.J. News G Quotes Reporter

Apple Fortron
Apple Pilot.
DOS 3.3 Upgrade
Music Theory
The Controller Bus Sys MISC. APPLICATIONS PACRAEES
Visicolc
Deskrop Plon il
CCA Dato Management DMS
Easywriter Word Processor
ASCII Express
Super Text 11
Programmo Apple Pie
The Landlord Apt. Mgmt. Pkg.
Peochtree Business Softwore.
Tax Preparer by HowardSots
Applebug Assem/Disossm/Editor
3-D Graphics By Bill Budge
Flight Simulator
The Wizord and The Princess
Cosmos Mission (Space Invaders)
Sorgon II Chess
Hi-Res Footboll
Adventure by Microsoft
Phancoms Five
Reversal (Othello).

[^0]
Phone Search

Abstract

This program cross-links a customer's phone number with the actual record number of the customer file so that his phone number in effect becomes his computer account number.

Horst K. Schneider
5341 West Bayaud Ave.
Denver, Colorado 80226

Is this the age of numbers? It appears to be. Wherever I go I seem to need a social security number, an account number, a customer number, a subscriber number, ad nauseum.

Our modern data processing equipment has had a great deal to do with this trend. But is it really necessary to dehumanize relationships between humans by insisting that Bill is \#68542 and Judy is \#68671?

I am a businessman who "went computer" in 1979 with an Apple II with 48 K , a printer and two $5^{\prime \prime}$ disk drives. While writing my programs for invoicing, statements, and so forth, I soon came to grips with the problem of assigning each customer a number. While I recognized the necessity of doing this I still could not suppress my feelings of aversion.

I decided to use a number my customers were almost as familiar with as their names - their telephone numbers. Asking customers for their phone numbers did not carry any stigma - in fact, I hoped it created in their minds the picture of an efficient office. Mail orders posed no problem either; very few business letterheads lack the phone number.

Now we all know that a customer file on a diskette stores the information in records numbered sequentially. That meant I needed a program to match a phone number with the actual customer
number - or rather the record number of the customer file. So much for the reason this program came to be.

Applesoft BASIC is a fine tool for programming in general and I use it extensively, but there are cases when any BASIC is just too slow for the business environment. And you don't have to be a mathematical genius to realize that a program for this problem, written entirely in BASIC, would be agonizingly slow while the machine language routine would search through a list of 500 phone numbers in less than a second. But read on - all you need is BASIC. The assembly language listing is for those who enjoy assembly programming or for those who wish to get into it.

Writing the search and compare routine in machine language saves considerable memory space since we can
nicely dispense with all the extra bytes that Applesoft tacks on when storing such a list of numbers as variables or strings.

There are actually three parts to this program. The main part, written in Applesoft BASIC allows you to add to the list, change the list, and search the list. Then there is a short machine language routine which the program invokes with CALL 38332. It then does the actual work of looking for the phone number in a list of numbers. Finally, there is a binary file containing all the phone numbers.

Enter the program exactly as shown, then type RUN 980. The last part of the program you typed in creates your machine language routine and saves it to your disks in Drive 1 and Drive 2. (You had a disk in each drive, didn't you?)

```
100 HIMEM: 36825
110 REM
120 REM PHCNE SEARCH
130 RDM EY HORST K. SCRNEIDER
140 REM
220 DS = CHRS (4)
230 PRINT DS"BLOAD PH-95"
240 TEXT : HCNE : VTAB 3: HTAB 8: PRINT "* * PHONE SEARCH * *"
250 VTAB 8: HTAB 10: PRINT "1 - SEARCS LIST"
260 VTAB 10: HTAB 10: PRINT "2 - ADD TO LIST"
270 VTAB 12: HTAB 10: PRINT "3 - CHANGE LIST"
280 VTAB 14: HTAB 10: PRINT "4 - SAVE ALL CHANGES"
290 VTAB 16: HTAB 10: PRINT "5 - REIURN TO MAIN"
300 VTAB 20: PRINT "YOUR CHOICE, PLEASE? -": VIAB 20: HTAB 24: GET OS: PRINT
    :A = VAL (OS): IF A < 1 ORA > 5 THEN COSUS 740: GOTO 300
310 VTAB 23: PRINT "(- RESPOND WITH 'X' TO REIURN TO START)": POKE 35,22
320 ON A GOIO 330,420,530,830,800
330 HONE : VTAB 5: HTAB 4: PRINT "* * SEARCH PHONE LIST * *"
340 Y = 1: VIAB 10: INPUT " - PHCNE NO.: ";A$: IF AS = "X" THEN 240
350 GOSUB 700: GOSUB 690: IF NOT Y THEN GOSUB 740: GOTO 340
360 POKE 38331,A: POKE 38330,B: POKE 38329,C: CALL 38332
370 Y = 1: GOSUB 770: IF NOT Y THIRN 400
380 A = FEEEK (6) + FKEK (7) * 256
390 VTAB 14: PRINT "CUSTOMER NO.: ;'A / 3: GOTO 400
400 VTAB 19: PRINT " - ANOIHER SEARCH? - Y/N ": VTAB 19: HTAB 28: GET OS
    : IF OS = "Y" THEN 330
410 GOTO 240
420 HOME : VTAB 3: HTAB 8: PRINT "* * ADD PHONE NO. * *"
430 F = PEEK (38327) + PEEK (38328) * 256: GOSUB 730
440 Y = 1: VTAB 12: INPUT " - NEN PHCNE NO.: ";AS: IF AS = "X" THIEN 240
450 gOSUB 700: IF NOT Y THEN GOSUB 740: GOTO 440
460 IF F < 36827 THEN GOSUB 750: GOTO 760
```

Now you save your program on disk and it's ready to go to work for you.

I have purposely not compressed the code to make it easy to change or relocate. It is also easy to increase the list size by multiplying by three the number of additional phone numbers you wish to store and subtracting this number from 36825 in line 100 , from 36827 in line 460 and from 36826 in line 870 , and adding it to 1574 in line 870.

If you operate with only one disk drive (and in a business application that is courting disaster) you should delete the references to " $\mathrm{J} \$$ " at the end of the main program.

When entering a phone number you may or may not use a hyphen (either $256-5515$ or 2565515 is acceptable).

The program will tell you how many phone numbers you have stored and will also alert you to a 'LIST-FULL' condition. In my business we delete a customer by changing his phone number to 0000000 . When adding a customer we always first search for a zero string and use that spot for our new entry.

As shown, it is a stand-alone program but can easily be incorporated into a larger one by using a hook after line 900, setting HIMEM: at the beginning of the main program, and deleting line 100.

The program is only a part of a larger program that handles pricing, billing, inventory control and statements, making the customer number available directly to the appropriate routines.

One last comment: All REM line numbers end with a ' 5 ' (except starting lines) for easier identification, even at 'List' speeds, in case you want to remove them from your WORKING program.

Horst K. Schneider is a businessman (both wholesale and retail) who enjoys the challenge that programming provides. His first programming effort was fairly ambitious. That program did all his pricing, invoicing, inventory control and monthly statements as well as other tasks such as printing mailing labels. He recently sold his business and has retired into writing software.

MNCRO'

470 GOSUB 690: POKE $F, A:$ POKE $F-1, B:$ POKE $F-2, C$: POKE F - 3, 255
$480 \mathrm{~F}=\mathrm{F}-3: \mathrm{H}=\operatorname{INT}(\mathrm{F} / 256): \mathrm{L}=\mathrm{F}-\mathrm{H} * 256$
490 POKE 38327,L: POKE 38328,H: GOSUB 730
500 VIAB 16: PRINT" - CUSTOMER NO.: "; (38326-F)/3
510 VIAB 19: PRINT " - ANOTHER ENTRY? - Y/N": VTAB 19: HTAB 26: GET QS: PF
: IF $\mathrm{Q} \$=$ "Y" THEN 420
520 GOTO 240
530 HOME : VTAB 3: HTAB 6: PRINT "* * CHANGE PHONE NO. * *"
540 VIAB 12: PRINT " - CUSTGMER NO. : ": VTAB 13: PRINT" (OR OLD PH. NO.)": VTAB 12: HTAB 20: INPUT "";AS: IF AS = "X" THEN 240
550 IF LEN (AS) < 5 THEN $N=3$ * VAL (AS): GOTO 600
$560 \mathrm{Y}=1:$ GOSUB 700: IF NOT Y THEN GOSUB 740: GOTO 540
570 GOSUB 690: POKE 38331,A: POKE 38330,B: POKE 38329,C: CALL 38332
$580 \mathrm{Y}=\mathrm{I}$: GOSUB 770: IF NOT Y THEN 670
$590 \mathrm{~N}=\mathrm{PEFX}(6)+\operatorname{PEEK}(7) * 256:$ GOTO 610
$600 \mathrm{~A}=\operatorname{PEEK}(38329-\mathrm{N}) * 65536+\operatorname{PEEK}(38328-N) * 256+\operatorname{PEEK}(3832$ $7-N): A S=S T R S(A)$
$610 \mathrm{AS}=\mathrm{IEFFIS}(\mathrm{AS}, 3)+"-"+\operatorname{RIGHIS}(A S, 4)$
620 VIAB 16: PRINT "OLD: ";AS
630 PRINT "NEW: ";AS: VTAB 17: HIAB 6: INPUT "";AS
$640 \mathrm{Y}=1$: GOSUB 700: IF NOT Y THEN GOSUB 740: GOIO 630
650 GOSUB 700: IF NOT Y THEN GOSUB 740: GOTO 640
660 GOSUB 690: POKE 38329 - N,A: POKE 38328 - N,B: POKE 38327 - N,C
670 VTAB 19: PRINT " - ANOTHER CHANGE? - Y/N": VTAB 19: HTAB 28: GET Q\$: PRINT : IF $Q S=$ " Y " THEN 530
680 GOTO 240
685 : : REM : : OONVERT TO MODULO
$690 \AA=\operatorname{INT}(X / 65536): B=\operatorname{INT} \cdot(X / 256)-A * 256: C=X-A * 65536-$ B * 256: REIURN
700 IF MIDS (AS,4,1) = "-" THEN AS $=\operatorname{LEFFIS(AS,3)+\operatorname {RIGHIS}(AS,4)~}$
710 IF LEN $(A S)<>7$ THEN $Y=0$
$720 \mathrm{X}=\mathrm{VAL}$ (AS) : RETURN
730 VTAB 5: HTAB 1: CALL - 958: VTAB 5: PRINT "TOTAL LISTINGS: "; (38326 - F) / 3: RETURN

735 : : REM : : ILL. ENIRY WARNING
740 VTAB 21: PRINT " - ILLEGAL ENIRY - PIEASE REENIER": FOR I = 1 TO 120 0: NEXT : VIAB 21: CALL - 958: RETURN
745 :: REM : :ALDIO WARNING
750 FOR $I=1$ TO 3: FOR J $=1$ TO 15:X $=$ PEEX (-16336): : NEXT : FOR K $=$ 1 TO 10: NEXT K, I: REIURN
760 TEXT : HOME : VIAB 16: PRINT " - OOPS - PAST PRPSENT STORAGE CAPACIT Y": VIAB 18: HTAB 30: PRINT "SORFY -": VTAB 23: GET QS: GOTO 240
770 IF PEEK $(38331)=255$ THEN VTAB 14: PRINT " - NO SUCH NO. ON RECOR D-": $Y=0$
780 REIURN
790 TEXT : HOME : VTAB 12: PRINT "- DO YOU WISH TO RETURN TO MAIN"
800 VIAB 14: PRINT "WITHOUT SAVING CHANGES - ?-Y/N:": VTAB 14: HTAB 39 : GET QS
810 IF QS<>>"Y" THEN 240
820 END : : REM : :DELETE 'END' IF RETURN HOOK IN 905 IS USED
830 TEXT : HCME : VTAB 12: HTAB 8: PRINT "* * BUSY * *"
$840 \mathrm{JS}=\mathrm{F}$, D2"
860 PRINT D\$"UNLOCK PH-95";J\$
870 PRINT' D\$"BSAVE PH-95 ,A $36826, L 1574 "$
880 PRINT D\$"LOCK PH-95"
890 IF J\$ $=1, \mathrm{D} 2 "$ THEN J\$ $=1$,D1": GOTO 860
900 TEEXT : HOME : VTAB 14: HTAB 12: PRINT "* * END * * ": POKE 37, 22 : PRINT
905 : : REM : : INSERT HOOK HERE
910 DEL 905,1070
915: :
920 : : REM : :THIS PROGRAM WILL
930 : : REM : : ENTER THE
940 : : REM : :MACHINE LANGUAGE
950 : : REM ::PORTICN AND THEN
960 : : REM : : DELETE ITSELF.
970: :
980 DIM A(73)
990 FOR $I=0$ TO 72: READ A(I)
1000 POKE $38327+I, A(I):$ NEXT
1010 DATA $182,149,0,0,0,169,179,133,6,169,149,133,7,169,184,133,8,169,14$ 9,133
1020 DATA $9,160,3,208,6,169,255,209,6,240,38,177,8,209,6,240,15,56,165,6$
1030 DATA $233,3,133,6,160,3,176,233,198,7,208,229,136,208,232,56,169,182$. 229,6
1040 DATA $133,6,169,149,229,7,133,7,96,141,187,149,96$
1050 DS $=$ CFRS (4)
1060 PRINT D\$"BSAVE PH-95,A1000,IL10,D1"
1070 PRINT D\$ "BSAVE PH-95,A1000,L10,D2": GOIO 840

CONTINENTAL SOFTWARE THE APPLE SOURGE.

For Apple owners only. Thoroughly tested, well documented programs for business and pleasure. All written by professionals. Each checked out carefully by experts in its field.

HYPERSPACE WRES

2 GRMES FOR THE PRICE OF $1 \$ 29.95$
48K Trek. Stardate 3421.
The Terraunion is being attacked.
You command United Starship Excalibur. Your mission: destroy the deadly
Klepton invasion force. Four levels, Novice to Master.
3-D Space Battle. Use your on-board scanners to search for alien ships in hires three-dimensional space. Destroy as many aliens as you can before you run out of fuel or your ship is destroyed. Hi-res graphics. Req. 48K, Applesoft in Rom+l disk drive. Dos. 3.2 or 3.3 .

L. K^{2} LAND MONOPOLY

$\$ 29.95$
Bankrupt your opponents while becoming the richest player in the game. Buy, sell, rent and trade to accumulate the most cash and property. Two to six may play. Computer is banker. Create your own special version using streets in your own town.
Hi-res graphics. Req. 48K, Applesoft in Rom +1 disc drive. Dos. 3.2 or 3.3.

HOME MONEY MINDER $\$ 34.95$

Complete home financial system com. bines an excellent Home Checkbook Program with Budgeting. Transactions by month by budget category. Bank reconciliation. Budget for year. Total expenses compared monthly and year-to-date. Plus much more.
Req. 48K, Applesoft in Rom, I disk drive + printer. Avail. in Dos. 3.3.

THE MAILROOM

\$34.95
Stores up to 750 names per disk. Prints master lists and labels 1, 2 or 3 across. Sorts in 5 seconds. Sort on any of 12 items, search any sorted item in 10-20 seconds maximum. Easy editing, customized inputs.
Req. 48K, Applesoft in Rom, 1 disk drive + printer (132 column capability needed to print Master List.) in Dos. 3.3.

THE COMPUTER PROGRAMMED ACCOUNTANT FOUR MODULES

Buy all four now-or add as you expand $\$ 175$ each ($\$ 250$ after $6 / 1 / 81$)
The first programs for your Apple that your accountant will like as much as you do. Nobody makes it better-or easier to use-than Continental Software. Simple step-by-step instructions. Excellent error checking. Modules can be used individually, or integrated into a complete Accounting System. Manuals only: just $\$ 15$ each.

CPA 1 GENERAL LEDGER.

True double entry bookkeeping with complete, accurate audit trails showing the source of each entry in the general ledger. Concise, meaningful reports generated include Balance Sheet, Profit \& Loss Summary, Trial Balance and Complete Journal Activity Report. Reports show monthly, year-todate and last year monthly + YID for comparison. Custom charting feature includes hi-res plotting of one or more accounts.

CPR2 ACCOUNTS RECEIVABLE

Prints invoices on available custom forms or on plain paper. Back orders and extensions computed. Issues statements for all customers, one or more customers, or only those with current, $30-60-90$ or 150 -day balances. Maintain up to 300 customers. Customized journals. Allows simulation of manual special journal entries. Posts to General Ledger. Prints aging report to 150 days. Also prints customer lists and labels.

CPR3 ACCOUNTS PAYABLE

Prints checks to vendors and nonvendors on available pre-printed checks or plain paper. Each check stub shows invoice(s) paid, discounts taken, net paid, Prints Purchases and Cash
\qquad ? parn Purchase

Disbursement Journals. Customized journals. Allows simulation of manual special journal entries. Prints Aging Report to 150 days, vendor list and labels and even a Cash Requirements Report. Posts to General Ledger.

CPR 4 PAYROLL

Maintains personnel records for as many as 100 employees. Quarter-todate and year-to-date earnings and deduction records. Employees are departmentalized and designated hourly or salaried. Prints complete Payroll Checks, 941 information, W-2s, State of California DE-3 information. Prints Payroll Journal and posts to General Ledger.

These are just some of the features of each CPA module. All require 48K, Applesoft in Rom, Dos. 3.3, 2 disk drives + printer.

At your local dealer or fill out and
 mail today. Phone lor immediate delivery.

Send me these revolutionary programs:
\square Hyperspace Wars . . \$
.
L.A. Land Monopoly.
Home Money Minder
\square The Mailroom.
\square CPA1 General
Ledger.
\qquad

CONTINENTAL
12101 Jefferson Blvd.,
Culver City, CA 90230

DISCOVER Where Learning is Fun And Recreation Becomes Educational

Computers and Learning...
 Games and the Arts...
 Kids Who Compute...
 Programming Problems \& Solutions... Adventure ...

Written with the Beginning and Intermediate Computerist in Mind

All the exciting topics you can imagine fill each issue of RECREATIONAL COMPUTING. *How can your computer help you and your family? *What is the best software to buy? *Is the newest hardware always the best? *How can you better use your computing power? Our pages answer these questions and more!

RECREATIONAL COMPUTING is easy to read, and makes the important topics easy to understand. Join us in exploring the pleasures and uses of small computers. Subscribe now and learn why we were the first personal computing magazine, and growing faster than ever!

SUBSCRIBE TODAY!
You won't want to miss a single issue.
Yes! Please enter my subscription for 1 year (6 issues).

Name
Address
City, State, Zip.
Dept. T10, P.O. Box E, Menlo Park, CA 94025

Are you ready to take the next step?

 $\mathrm{D}_{\mathrm{R}} \mathrm{D}_{\text {obrisis }} \mathrm{J}_{\text {Ounval }}$Let the Doctor's prescriptions fill you with the most vitalizing, up-to-the-minute information for you and your Micro!

These new remedies include the latest in operating systems, programming languages, hardware design and architecture, data structures, telecommunications and more.

Recent articles have included: Analysis of the 6502's Opcodes, A Z80 Memory Test, N-Logs: A New Number Language for Scientific Computers, CP/M to Pascal File Conversion, and indepth hardware and software reviews.

All this and more for only $\mathbf{\$ 2 1}$ per year - 12 issues!

Yes! Please enter my subscription for 1 year (12 issues).

```
I enclose \$21.
Please bill me.
```

Name
Address
City, State, Zip
Dept. T10, P.O. Box E, Menlo Park, CA 94025

Apple Bit 'N Pieces Educators Group
This group of math teachers meets on the first Thursday of each month except during summer. Purpose of group is to exchange ideas and programs. For more information please contact:

Pat Calabrese, Dept. Chairman
JS Wilson Middle School
Apple Bit'N Pieces
Educators Group
901 West 54th Street
Erie, PA 16509

Toronto PET Users Group

Membership in this fast-growing club now totals 430. Members receive a subscription to The Target, as well as access to all programs (1400) in the disk library. Regular dues are $\$ 20$, and student and associate dues are $\$ 10$ per year. For more information contact:

Chris Bennett, Secretary
Toronto PET Users Group
381 Laurence Avenue West
Toronto, Ontario
Canada M5M 1B9

Computer Programs

for Investment Management

As an investor, you can obtain professional-quality management programs by belonging to a professional, nonprofit group called the MicroComputer Investors Association (MCIA). Since 1977 the Association has published a journal, The MicroComputer Investor. The journal has a wealth of information and programs for investors who use microcomputers. For membership application and an index of all programs and articles published to date, send $\$ 3.00$ for an information packet to:

Jack Williams, MCIA
902 Anderson Drive
Fredericksburg, Virginia 22401

Forth Interest Group

This group meets the fourth Saturday of the month at noon and has a membership of over 1200. The club puts out a publication called "Forth Dimensions." For further information, contact:

Jim Flournay Ancon
17370 Hawking Lane
Morgan Hill, California 95037

Attention Educators

Affiliated with the Cleveland Digital Group, this club's primary objective is the investigation, discovery, and exchange of functional and innovative computer-aided instruction ideas among interested computer, minicomputer, or microcomputer users and/or owners. Monthly meetings are held every third Sunday at the Cleveland Heights-University Heights main library, 2345 Lee Road, Cleveland Heights, Ohio. If interested, send a selfaddressed stamped business envelope to:

Joyce Townsend
P.O. Box 18431

Cleveland Heights, Ohio 44118
or call (216) 932-6799

Dental Computer Newsletter

For medical and dental professionals using micro- and minicomputers for treatment and office purposes. Membership is over 1500. Meetings are held at the address below. For more information, contact:
E.J. Neiburger, DDS, President

1000 North Avenue
Waukegan, Illinois 60085

OSI - MUG
 Ohio Scientific
 Michigan User's Group

This group has a membership of approximately 130 people. It is interested in contacting other user groups and anyone wishing to become a member. For information write:

Ralph V. Johnson, Sec.
OSI - MUG
3247 Lakewood Avenue Ann Arbor, Michigan 48105

Apple Power Users Group

This group meets the second or third Wednesday of every month (7:00 p.m.) at Syosset High School, Syosset, Long Island, New York. Jim Lyons is president of the club, whose membership is now 110 and expanding. There is a bimonthly newsletter, "The Pits," and yearly dues are $\$ 20$ which includes a free subscription to the newsletter, computer hardware and software discounts, feature demonstrations and presentations at all meetings and an extensive program library. For information concerning membership, library program exchanges, newsletter exchanges, etc., please contact:

Apple Power, c/o m. Lack
8 Division Street
Holtsville, Long Island,
New York 11742

MICRO (East Brunswick Junior Computer Club)
This group whose members are in grades 7-12 meets twice a month at the East Brunswick Public Library. The main purpose of the group is to teach beginners about computers. For additional information, please contact:

Larry Kaplan, Secretary
28 Green Hills Road
East Brunswick, NJ 08816

Microcomputer Users International

 This club meets on the third Tuesday of each month. Northern Bytes is the group's monthly newsletter. For more club information, or to arrange for a newsletter exchange, contact:Jack Decker, Newsletter Editor
1804 West 18th St., Lot 155
Sault Ste. Marie, MI 49783

The Apple Guild

The Apple Guild is an organization whose purpose is to promote the interchange of information and applications among Apple microcomputer users. In addition to holding monthly meetings, The Guild supports a sophisticated, computerized, telecommunication system (617-767-1303); maintains a collection of hardcopy material and software at its Apple Resource Center located at Massasoit Community College (Brockton, MA); and plans to publish a quarterly journal. Membership requests and other inquiries should be sent to:

The Apple Guild
P.O. Box 371

Weymouth, MA 02188

Wondai Apple Users Group (W.A.U.G.)
This group of 20 members meets twice a month, and publishes a monthly newsletter called Waug-Waug. The group aims to exchange and promote Apple ideas and reviews. Contact:

Dr. P. Lip
P.O. Box 19

Wondai Old 4606
Australia

OSI Users Group Wellington

This group of 30 people meets on the 3rd Thursday of each month at 7:30 p.m. at Computer Consultants Ltd., Wingate Lower Hutt. The club arranges a guest speaker, and provides an OSI microcomputer for members to use. Aims include exchange of ideas and information, plus tuition of machine code. Membership is $\$ 5$ annually. Contact:

Derryl Cocks (Vice Pres.)
27 Tawa Terrace
Tawa, Wellington, New Zealand

Don't buy Apple Software $2 r-13$ $=0012$ 1931 until you read this book.

First check The Book-the one complete critical analysis of most Apple Software available. Games, Educational, Business, Utility programs and more. Each comprehensively rated on 11 separate points. Each reviewed by an expert in its field. Just \$19.95.
Now you can compare and get more for your software dollar. Does the program you need exist? How good is it? Which sotware vendors offer the best support? Find out all this and much more.
MasterCard \& Visa accepted. Fill out and mail today or call for shipment.

NAME
ADDRESS
CITY \qquad STATE \qquad EXP.

Calif. residents add $6 \% \quad 16720$ HAWTHORNE BLVD., LAWNDALE, CA 90260. (213) 371-4012.

GET FREE SOFTWARE FOR YOUR APPLE!!!

HOW? Just order any of the items below, and for every $\$ 100$ worth of merchandise order an item from the Bonus Software Section at NO COST! C.O.D. \& Personal Checks accepted for all orders.

HARDWARE BY APPLE
APPLE II PLUS, 48k
DISK DRIVE+CONTROLLER (3.3)
DISK DRIVE only
Language System w. Pascal
Language System W. Pascal
Silentype Printer \& Interface
Silontype Printer \& Interface
Integer or Applesoft Firmware Card Graphics Tablet
Parallel Printer Interface Card
Hi-Speed Serial Card

HARDWARE by Others

HAYES MICROMODEM II
VIDEX VIDEOTERM 80 W. GRAPHICS
MICROSOFT Z8O SOFTCARD
MICROSOFT 16k RAMCARD
CORVUS 10MB HARD DISK
CORVUS 10MB HARD DISK
SSM AIO SERIALPARALLEL A\&T
MICRO-SCI Disk \& Controller

VIDEO MONITORS

Leedex-Video-100 1 2" B\&W w/Cable Leedex 12' Green w/Cable Leedex $13^{\prime \prime}$ COLOR MONITOR 8 cable

SOFTWARE by APPLE

APPLE FORTRAN
APPLE PILOT

159

HARDWARE

by Mountain Computer

Clock/Calendar Card
 ADD \& D/A Interface
 Expansion Chassis
 ROMplus Card

Mark Sense Card Reader

SOFTWARE by Others
PEACHTREE BUSINESS SOFTWARE VISICALC
EZ WRITER PROF. SYSTEM
APPLE FORTRAN by MICROSOFT
APPLE BASIC COMPILER by MICROSOFT
APPLE BASIC COMPILER by MICROSOFT 3
APPLE COBOL by MICROSOFT
MUSE SUPER-TEXT II
MUSE SUPER-TEXT II
PROGRAMMA APPLE PIE

PRINTERS

EPSON MX-80	515
EPSON MX-70 W. GRAPHICS	415
CENTRONICS 737	737
NEC SPINWRITER 5510 RO	2795
VISTA V300 DAISY WHEEL 25CPS	1750
VISTA V300 DAISY WHEEL 45CPS	2025

APPLE PLOTS YOUR DATA \& KEEPS YOUR AECORDS TOO APPLE DATA GRAPH 21: Plots up to 3 wiperimposed curver on the Hirces Screan both the X \& Y axee dimentioned. Each to ditic and recalled immedietaly for updating Up to 100 graphe can be and reced on the immedietbily for updating. Up to 100 graph cian be tored on the same disc, Great for Stack-merket Cherting Buslnees Management, and Cleseroom instructionl
EQUIRES 4 K APPLE RECORD MANAGER: Allowe complete flies to be are Instantencous Records within any flie can contaln up to 20 flelds, with user-defined heading:. Information can be atring or numeric. Usert can browne thru fives unne peoe forword, prope beckwerd or random-wowch commende Records can eanily be aearched, sltered or sortind et will Files can be stared on the avellable. Recordy or flices cani be primed. if destred Additional modulet coming are - STATISTICS INTERFACE, CHECKBOOK, MAILING LIST \& DATAENTRY.
REQUIRES ABK \& ЯOM APP LESOFT \$ 35
All Softwere sbove on Diak for APPLE DOS 3.2, convertible
to 33

It's Time to Stop Dreaming, Part 2

Robert M. Tripp
Editor/Publisher
MICRO

Part 1 (MICRO 37:9) presented the Motorola 6809 microprocessor - a candidate for serious consideration as a successor to the 6502. The four major points made were:

1. No manufacturer has announced plans to develop an improved 6502;
2. The 6809 is closely related to the 6502 in basic architecture, philosophy and instruction set;
3. The 6809 has a number of improvements which make it very powerful and a worthy successor to the 6502; and,
4. While the 6809 is relatively new, there are already a large number of hardware and software products available. These include upgrades for existing 6502 systems - the SYM and Apple for example - as well as totally new products, such as Commodore's brand new "MicroMainframe," the Radio Shack Color Computer, and others.

This article, part 2 , will concentrate on describing some of the improvements which make the 6809 a rather remarkable device.

The 6502, 6800 and 8080 microprocessors, were designed to be process controllers, not microcomputer building blocks. Therefore, while they could be used as the "brains" of microcomputers, the many design trade-offs that had been made based on their intended use as relatively simple, ROM-oriented process controllers resulted in limitations when used in microcomputers.

The designers of the 6809 had a totally different charter. They set out from the start to build a new device which would be used primarily as the intelligence of a microcomputer. Many of the individual new features work together to provide important new capabilities.

Position-Independent Code

In a dedicated microprocessor controller application there may not be any reason to write position-independent code. After all, the program is probably in ROM and is unique to the application. There are, however, many good reasons to write position-independent code in a general-purpose microcomputer. Different hardware configurations may require that the program reside in different address spaces. In a disk-based system, various software modules may want to be resident in numerous combinations. If each module can only run in a specific address space, then there are severe restrictions on which modules may co-exist. Given a sufficiently well-defined set of interfacing rules, it will even be possible to write software modules which can operate on a variety of microcomputers.

There are four major improvements the 6809 offers which directly affect its capability to support positionindependent code. These include:

1. Long Branches which permit relative branching to any location;
2. A Branch to Subroutine instruction which permits relative branching to a subroutine;
3. Addressing relative to the Program Counter;
4. The Load Effective Address instruction which permits the address calculated by many complex addressing modes to be directly accessed.

Long Branch. (This does not refer to the saloon which was so popular in Gunsmoke.) As anyone who has worked in assembly level programming on the 6502 can testify, the limitation of the Branch instructions to plus/minus only 128 locations (decimal) can be a real nuisance as well as a real restriction. The 6809 instruction set includes two addressing modes for all of the Branch instructions.

Short - identical to the 6502 with one byte of offset requiring the target address to be within 128 bytes of the current program counter; and,

Long - which has two bytes of offset permitting the target address to be anywhere in the normal 64 K memory.

The Long Branch obviously makes life easier by eliminating the need for branches to branch to branches, etc., to accomplish a branch to an address outside the one byte addressing range. Since it is program-counter-relative, it provides most of the solution to the problem of transferring control to other addresses in a relative way, which makes it position-independent. The 6502 "can" branch to any relative location in memory by having one branch go to another branch to another branch until the target is reached, but this can get so complicated and difficult to maintain that it is generally not practical. The Long Branch improvement in the 6809 is significant.

Branch to Subroutine. The 6502 does not have any direct method for making a relative branch to a subroutine. This is probably the single most serious problem encountered in trying to write position-independent code. There is no simple solution. One can make all subroutine calls via a fixed table, which is itself updated as the code is moved around in memory. Or a special software processor can be written, which traps all subroutine calls and calculates the actual address. Another alternative
is that code can be written which will function in a manner similar to a subroutine but will perform some sort of test to determine where to return to so that it may be called via a normal branch. There are other methods as well, but, every technique for getting around the lack of a Branch to Subroutine instruction involves tricky code, additional memory, extra instruction cycles, and can be difficult to maintain and/or debug.

The 6809 does have a straightforward Branch to Subroutine (BSR) which operates exactly as one would expect. It is just like the Jump to Subroutine (JSR) of the 6502 except that it is a branch relative to the Program Counter, not an absolute jump. Like all other Branch instructions on the 6809, it can be short (BSR - one byte offset) or long (LBSR - two byte offset), thereby allowing the Branch to have a target anywhere in memory.

BSR NEWTST

(control will go to NEWTST) (subroutine will return control to here)

NEWTST (same code)

RTS
(Return from Subroutine instruction)

Addressing via the Program Counter.

 The improved Branch instructions solved one major PIC problem - that of passing program control in a relative fashion throughout the whole memory and to subroutines. The major problems remain: how to address data (individual values, tables, lists, messages, etc.) in a relative way to preserve the PIC. On the 6502 there is no simple way to access data relative to the current value of the program counter. Some tricks, similar to those mentioned to provide relative subroutine calls, can be used, but they all have drawbacks and increase both time and space requirements. The 6809 provides Program Counter Relative Addressing. This form of addressing is almost identical in concept to the Branch addressing. The offset may be either one byte or two bytes, and is added to the current value of the Program Counter Register (PCR) to determine the absolute address. While the Branch operation is normally written in the formBEQ JUNK
it actually adds the signed value of JUNK to the Program Counter Register. The Branch may therefore be considered to be of the form:

BEQ JUNK,PCR

(add the signed value of JUNK, which may be one or two bytes, to the Program Counter and set the Program Counter to the new value)

It can then be seen that the Program Counter Relative address is identical since it has the form:

> LDA JUNK,PCR
> (add the signed value of JUNK, which may be one or two bytes, to the Program Counter and load the A register from the calculated address)

This provides the solution for accessing any single memory location in a PIC fashion. The memory at any address may be loaded, stored, incremented, tested, compared, complemented, and so forth with PCR addressing, thereby providing support for PIC.

Loading Effective Addresses. While the Program Counter Relative addressing supports accessing single memory address, it would be very useful to be able to get the absolute address of a table, list or message into an index register so that the whole table could be readily accessed. This is one of the features of a very useful new 6809 instruction: Load Effective Address (LEA). The application of this instruction here is but one of many uses. Other uses will be discussed later. The LEA instruction, in combination with the PCR addressing, allows an index register to be loaded with an absolute address which is calculated relative to the current Program Counter. The form is identical to that discussed for the Branch and Program Relative Addressing:

LEAX TABLE,PCR

(add one or two byte offset to the current Program Counter and place this value - the Effective Address - in the X index register)

The X register now contains the absolute address of the location TABLE. Since the 6809 supports a number of indexing modes - Zero Offset Indexed, Constant Offset Indexed, Accumulator Offset Indexed, Auto Increment/Decrement Indexed and Indexed Indirect this ability to obtain the absolute ad-
dress relative to the Program Coun solves a lot of the normal proble encountered in generating PIC.

Position-Independent Summa1 While writing PIC on the 6502 is pos ble, it is not an easy task and alwa adds considerable complexity a: overhead. I wrote two versions of video driver to run anywhere in an Al SYM or KIM. In both versions, the pr gramming required to provide PIC w more complex than any of the code quired to support the numerous vid functions! The support that the 68 has added would make a similar modi almost trivial to create PIC. The m: improvements of the 6809 which dire ly support PIC are: Long Branck which are relative to any address frc any address; the Branch to Subrouti instruction which permits relative : dressing of subroutines; the addressi of locations relative to the Progra Counter; and the Load Effective Addr instruction which can calculate t absolute value of a relative address a make it available for the numerc indexed instructions and indexi modes. With all of these added suppo for position-independent coding, thert no reason to write position-depends code on a 6809 microprocessor-bas system.

The Versatile Stacks

The Stack plays a very import: part in the operation of every signific: microprocessor, including the 651 The Stack is a basic part of the hardw: interrupt processing, is required for s : ing the return address during a si routine call, and can be used as te porary storage, to pass parameters, a so forth. Unfortunately, the 6502 off only limited Stack support. It has on one Stack, which is limited to 256 by and must reside on page one 10100 01FF). There are very few Stack instn tions: TXS (set Stack Pointer from register), TSX (put Stack Pointer intc register), PHA (Push A register Stack), PLA (Pull A register from Stac PHP (Push Status on Stack), and P (Pull Status from Stack). Other instr tions such as JSR, RTS and RTI use 1 Stack, but would not normally be ci sidered Stack support instructio. Although there are many uses c would like to make of the Stack, on 1 6502 the support is limited.

The 6809 makes full use of the St: concepts. This is done in a number ways:

1. There are two Stacks - a Syst Stack and a separate User Sta
2. The Stack Pointers have all of the same indexing modes as the X and Y registers.
3. Any combination of registers may be Pushed/Pulled from either Stack in a single instruction.
4. The Load Effective Address may be used with the Stack registers.
5. Each Stack register is 16 -bit, meaning that Stack may be up to 64 K bytes and may be located anywhere in memory.

Each of these improvements to the Stack support can have varying degrees of importance, depending upon the application. The overall effect of these improvements is the creation of a whole new facility with new ways of performing many programming tasks. Since the 6502 has limited Stack support it is not surprising that the Stack is not normally used for much beyond its subroutine, interrupt, and occasional short-term storage. With the 6809 features, many new ways of using the Stack become possible.

One difficulty in using the Stack of the 6502 is that it must be "shared" with the hardware. Interrupts and subroutine calls are forever putting things on and taking things off the Stack. The User Stack on the 6809 does not have this problem. All hardware and subroutine service is handled by the System Stack, leaving the User Stack alone. Since all of the indexing operations are available to the two Stack Pointers, which are treated as two additional 16 -bit registers, many operations are possible on the Stack that would be too complicated for the 6502.

A number of programming problems may be solved using Stacks. These include position-independent, re-entrant, and recursive coding. Many high level languages can be programmed to be more efficient if there can be free and easy access to Stack operations. An example of the improved 6809 Stack operation is the use of the Load Effective Address instruction to modify the Stack Pointer. Compare the following processes for moving the Stack Pointer forward 20 (decimal) positions on the 6502 and the 6809.

6502:
STX XTEMP Save X register in some memory location

ATEMP Save A register in some memory location

TSX		Put current Stack Pointer into X register
TXA		Move current Stack Pointer into A register
CLC		Clear carry for addition
ADCIM	\#\$14	Add 20 (decimal) to the current value
TAX		Put new value into X register
TSX		Put new value into Stack Pointer
LDA	ATEMP	Restore A register
LDX	XTEMP	Restore X register

6809:
LEAS 14,S Load Effective Address into Stack register = current Stack value +20 (decimal)

This operation could be used to clean up the Stack after it has been used for temporary storage. It is obviously very simple on the 6809, and probably more trouble than it is worth on the 6502.

The 6809 makes it easy to access data on the Stack. The Transfer instruction can be used to copy the Stack Pointer into any other index register, and then operations can be made relative to the index register without disturbing the Stack Pointer.

TFR X,S
 Will copy the 16 -bit Stack Pointer to the X register

All of the indexed operations may now be performed on the X register without any involvement of the Stack Pointer. Typical applications would be to pass subroutine parameters between the calling program and the subroutine on the Stack with the index register being used to access the various paramaters in any order as required. Then, as the Stack Pointer may be changed due to various operations, the reference pointer can stay fixed.

LDA $-5, X$

to refer to a location five locations below the position of the Stack Pointer at subroutine entry

The useful programming techniques which depend on stack-type operations are very well supported by the 6809 .

Other New Products

The Radio Shack new Color Computer is 6809-based. At this time I do not have enough information to give a full report of its features, but hope to have this information for a column soon.

Commodore has announced the "Micro-Mainframe," a new 6809-based microcomputer with a large body of software developed by Waterloo Computering Systems. This product will be in the $\$ 2000$ range, complete with micro BASIC, micro PASCAL and other languages, and is supposed to be available by the end of this year.

The Computerist has announced that its new multi-controller board will offer the 6809 as one of its many options. The board will provide controllers for floppy disks, IEEE-488 bus, RS-232 communication, cassette interface, up to 56 K memory in any combination of RAM, ROM and EPROM, plus parallel and serial I/O ports. Initial deliveries are scheduled for this summer.

Last month's column mentioned a number of manufacturers of 6809 -based hardware and software, but did not give the addresses. A "6809 Resource List" at the end of this installment provides this additional information. If your company has a 6809-based product, send along as much information as possible to me so that you may be covered in future columns. If you have had experience with the 6809 , in almost any environment and on any equipment, please consider writing about it for MICRO. Our readers are anxious to keep abreast of the rapid developments in this area and will appreciate hearing from fellow readers.

6809 Resource List

Technical Systems Consultants Inc. Box 2570
West Lafayette, Indiana 47906
Percom Data Co., Inc.
211 North Kirby
Garland, Texas 75042
Softech Microsystems, Inc.
9494 Blue Mountain Road
San Diego, California 92126
Computer Systems Center
7413 N. Lindbergh Boulevard
St. Louis, Missouri 63132
Ackerman Digital Systems
110 N. York Road 208
Elmhurst, Illinois 60126
Canon USA Inc.
10 Nevada Drive
Lake Success, Long Island
New York 11040
Commodore Business Machines, Inc. 681 Moore Rd.
King of Prussia, Pennsylvania 19406

Motorola Semiconductor Prod. Inc. P.O. Box 20912

Phoenix, Arizona 85036
Smoke Signal Broadcasting
31336 Via Collinas
Westlake Village, California 91361
Forth Inc.
2309 Pacific Coast Highway
Hermosa Beach, California 90254
Microware Systems Corp.
5835 Grand Avenue
Des Moines, Iowa 50304
Phoenix Digital
2315 North 35th
Phoenix, Arizona 85009
Software Dynamics
211 West Crescent
Anaheim, California 92801
Informer Inc.
P.O. Box 91054

Los Angeles, California 90009
Stellation Two
P.O. Box 2342

Santa Barbara, California 93120
The Computerist Inc.
34 Chelmsford Street
Chelmsford, Massachusetts 01824
NCRO"

AVAILABLE NOW! THE INTERNATIONAL MICROCOMPUTER SOFTWARE DIRECTORY

ONLY $\$ 28.95+\$ 2.95$ post.
5000 entries, cross-referenced by machine, O/S, application, vendor and program name.
Phone or write for details. All major credit cards accepted.

IMPRINT SOFTWARE

US . 420 South Howes St., Ft. Collins, CO 80521 - Tel 3034825574
UK - 16 Milton Avenue, Highgate, London N6 Tel 013483998

New Publications

Mike Rowe
New Publications
P.O. Box 6502

Chelmsford, MA 01824

General 6809

6809 Microcomputer Programming \& Interfacing, With Experiments by Andrew C. Staugaard, Jr. Howard W. Sams \& Co., Inc. (4300 West 62nd Street, Indianapolis, Indiana 46268], 1981, 270 pages, diagrams, photos, tables, $53 / 8 \times 81 / 2$ inches, paperbound. ISBN: 0-672-21798-8 \$13.95

This book is designed as a tutorial type of text or "cookbook" for a first exposure to the 6809, a highperformance 8-bit microprocessor, or to high-performance microprocessors in general. According to the author, the 6809 approaches the performance of many 16-bit devices, without the overhead costs required to engineer such a 16 -bit system.

CONTENTS: Fundamental 6809 Concepts and Chip Structure-Introduction; Objectives; 6809 Evolution and Design Philosophy; 6809 Improvements; 6809 Chip Structure; Review Questions; Answers. 6809 Addressing Modes-Introduction; Objectives; Inherent, Immediate, and Extended Addressing; Direct Addressing and the Direct Page Register Relative Addressing; Indexed Addressing; Post Byte; Indirect Addressing; Register Addressing; Review Questions; Answers. 6809 Registers and Data Movement Instructions-Introduction; Objectives; 6809 Internal Register Format; Data Movement Instructions; Review Questions; Answers. Arithmetic, Logic, and Test Instructions-Introduction; Objectives; Arithmetic Instructions; Logic Instructions; Test Instructions; Review Questions; Answers. Branch and Miscellaneous Instruc-tions-Introduction; Objectives; Branch Instructions; Miscellaneous Instructions; Review Questions; Answers. 6809/6809E Input and Output Signals-Introduction; Objectives; 6809 Pin-Outs; 6809E Pin-Outs; Review Questions; Answers. 6809/6809E Interfacing and Applications-Introduction; Objectives; A Minimum 6809 System; An Expanded 6809 System; Multiprocessor Systems; Remote Data Acquisition; The MEK6809D4 Microcomputer Evaluation

System. Appendices A: 6809/6809E In: tion Set-Operation Notation; Res Notation; Definitions of Executable Ins tions. B. The 6820/6821 Peripheral. face Adapter (PIA)-6821 Funct Description; 6820/6821 Pin Assignm PIA Interfacing and Addressing; PL itialization and Servicing; Review (tions; Answers. C. Specifica Sheets-MC6809/MC68A09/MC68 MC6809E / MC68A09E / MC68J MC6829; MC6839; MC6842; MEK68C MEK6809D4/MEK68KPD. D. MC Instruction Set Summary. Index.

Pascal

Pascal Primer by David Fox Mitchell Waite. Howard W. San Co., Inc. $[4300$ West 62nd St Indianapolis, Indiana 46268), 1981 pages plus tear-out UCSD $P_{\text {i }}$ reference card, line drawings, grams, listings, $85 / 8 \times 111 / 8 \mathrm{inc}$ cardstock cover with Wire-O bind ISBN: 0-672-21793-7
\$1
This book was designed for people have dabbled in BASIC and war learn programming in Pascal. authors are committed to he. readers master "Pascal without te ${ }_{\text {i }}$

CONTENTS: Introduction: An Overvi Pascal-Skip This Chapter; How This Is Organized; What Is Not Included; W Pascal?; The Crisis That Gave Bir Pascal; The Rat's Nest Analogy to P: Not a Black and White World; Why Is F Special?; The Parts of Pascal; A History of the Language; A Present Da ample: Apple Pascal. Pascal: Begi Concepts-Program Structure: PROGI BEGIN, END; WRITELN and WRITE sor Control: GOTOXY; Quiz. Variable Inputting-Variables; Variable T Calculations; Quiz-Variables; REA READ-Input Without Pressing "Ret Quiz-Inputting; Other Variable T REALs, BOOLEANs, LONG INTEC Quiz-Other Variable Types. Procedurt First Time Around-Building Bl Global and Local Variables; Proce Calling Procedures; Nested Proced Quiz-Procedures. Program Control Loops-The FOR Statement; Variatio FOR; Compound Statements; The Payment Program; Expanding a Pro

Singing the file transfer blues? Then...

Use your Micromodem $3 .{ }^{1}$ A 10^{2} Card, or Apple Comm Card ${ }^{3}$ to:

Send datafiles, BASIC programs, even machine code
to most computers over phone lines.

Copy anything you see

into a 31 K buffer then save it on disk andior print it under your complate control.

Mariy more features!
Secit at your favorite computer store today.

Docision

Decision Systems
P.O. Box 13006 Denton, TX 78203

SOFTWARE FOR THE APPLE II*

SAM-DS is an integrated set of Applesoft routines that gives indexed file capabilities vour BASIC programs. Retrieve by key, partial key or sequentially. Space from deleted records is automatically reused. Capabilities and performance that match products costing twice as much
$\$ 50$ Disk, Applesoft.
PBASIC-DS is a sophisticated preprocessor for structured BASIC. Use advanced logic constructs such as IF...ELSE..., CASE, SELECT, and many more. Develop programs for integer or Applesoft. Enjoy the power of structured logic at a fraction of the cost of PASCAL.
\$35. Bisk, Applesoft (48K, ROM or Language Card).
DSA - DS is a dis-assembler for 6502 code. Now you can easily dis-assemble any machine language program for the Apple and use the dis-assembled code directly as input to your assembler. Dis-assembles instructions and data. Produces code com patible with the S-C Assambler Iversion 4.0). Apple's Toolkit assembler and others. $\$ 25$ Disk. Applesoft (32K, ROM or Language Card)

FORM-DS is a complete systern for the definition of input and output froms. FORM OS supplies the automatic checking of numeric input for acceptable range of values. automatic formatting of numeric output, and many more features.
$\$ 25$ Disk, Applesoft 132 K, ROM or Language Card)
UTIL-DS is a set of routines for use with Applesoft to format numeric output, selec tively clear variables (Applesoft's CLEAR gets everythingl, improve error handling. and iriterface machine language with Applesoft programs. Includes a special load routine for placing machire language routines underneath Applesoft programs.
$\$ 25$ Disk, Applesoft.
SPEED-DS is a routine to modify the statement linkage in an Applesoft program to speed its execution. improvements of $5-20 \%$ are common. As a bonus, SPEED-DS includes machine language routines to speed string handling and reduce the need fo garbage clean-up. Author: Lee Meador
\$15 Disk, Applesoft (32K, ROM or Language Card).
(Add- $\$ 4.00$ for-Foreign Mail)
Apple Il is a registered trademark of the Apple Computer C
anteractive graphicsigame language FOR THE PET/CBM

VIGIL is an exciting new interactive language for your PETICBM micro. VIGIL. Video Interactive Game Interpretive Language " is en easy to learn graphics and game language that leis you quickly create interactive applications.

- More than 60 powerful commands permit you to aasily manipulate graphics figures on the screen
* Double density graphics give you 80×50 plot positions on your- 40 column PET/CBM
* Large number display capability, access to two event timers and tone generation (it you have ext. speaker)
* Load and save your Vicil programs to cassatte or diskette
- Nine interactive programs demonstrate the power of Viell - Breakout, SpaceWar, AntiAircraft, U.F.O., SpaceBattle, Concentration, Maze, Kaleidoscope ${ }_{6}$ Fortune
- Comprehensive user's manual with complete listings of enclosed programs
VICIL comes on cassette, or diskette ready to run on any 40 column PETICBM micro with at least 8 K of memory. Specify ROM-se when ordering. 8502 listing of the VIGil interpreter avaliable separately.
vell FOA PutcBM on Cessette or Diakette (w/o programs) vill User's Mannual (refundable with software). Mryl inter Mor listing fgcon Alsembly language
PET MACHINE LANGUAGE GUIDE .. $\$ 8$.

ABACUS SOFTWARE
P.O. Box 7211

Grand Rapids, Michigan 49510
(616) 241-5510

Prices include postage. Michigan residents include 4\% sales tax. Orders must be prepaid or via benkcard (Mastercard, VISA. Eurocard, Accesse, etc.). Include card number and expiration date.
(C) 1881 by Roy Wainwright

FESSENDEN COMPUTER SERVICE

Flat Rate

DISK DRIVE OVERHAUL

One Week Turnaround Typical

Complete Service on Current Remex, MPI and Shugart Floppy Disk Ditves.

FLAT RATES

8" Double Sided Drive	$\$ 170.00^{*}$
8" Single Sided Drive	$\$ 150.00^{*}$
51/4" M.P.L. Drive	$\$ 100.00^{*}$
"Broken, Bent, or Damaged Parts Extra	
You'll Be Notified of	
1. The date we received your drive.	
2. Any delays and approximate time of completion.	
3. Date Drive was shipped from our plant	
4. Repairs performed on your Drive.	
5. Parts used. (" and description).	
6. Any helpful hints for more reliable performance.	
7. 90 Day Warranty.	
8. Ship Your Drive Today.	
9. Other Brands Accepted.	
10. Write or call for further details.	

PHONE (417) 485-2501
FESSENDEN COMPUTER SERVICE
116 N. 3RD STREET
OZARK, MO 65721

BENEIELE BOFTWNARE, INC. IS PLEASED TO INTRODUCE... OUR 1981 COLLECTION OF SUPERIOR SOFTWARE FOR THE APPLE COMPUTER...

APPLEBOFT-PLUB ETRUCTUAED BABIC [APLUE]

由е5.0¢
$32 \mathrm{~K}+$, Disk II, ROM/RAM Applesoft, Apple II/Apple II +
APLUS is a $4 K$ machine language utility that adds the following structured programming commands to Applesoft basic: 1) WHEN. . ELSE. . FIN, 2) UNTIL, WHILE, 4) UNLESS, 5) CASE, 6) SELECT (variable), and 7) (OTHERWISE). Multi-line IF.. THEN statements are also supported. APLUS allows the use "named" subroutines or "procedures". The programmer can now instruct a program to "DO CURVE-FIT" without worrying about the location of th subroutine. APLUS automatically indents " $\&$ LIST' "ed programs to clarify the logic flow. The APLUS ' $\&$ CONVERT"' command replaces the above structure programming commands with "GOTO'"s and "GOSUB''s to provide a standard Applesoft program as output. New programs can now be written usir 'GOTO" ${ }^{-l e s s}$ logic.

APPLEBOFT PROGRAM OPTIMIZER [AOPT]

9PD.OC
32 + , Disk II, ROM/RAM APPLESOFT, Apple II/Apple II +
AOPT is a 2.2 K machine language utility that will substantially reduce the size of an Applesoft program without affecting the operation of the program. A01 automatically: 1) Shortens variable names, 2) Removes remarks, 3) Removes unreferenced lines, 4) Appends short lines together, 5) Removes extra colon and 6) Renumbers line numbers. AOPT will convert a verbose, well documented, development version of a program into a memory-efficient, more secure, pr duction version of the same program. This is the ORIGINAL and the BEST optimizer on the software market today!

DOS PLUS

\$25.0¢
$32+$, Disk II, DOS 3.3, Apple II/Apple II +
DOS PLUS is the software solution for living with both 13 -sector (DOS 3.1, 3.2, and 3.2.1) and 16 sector (DOS 3.3) Apple diskettes, DOS PLUS adds 8 ne commands to Apple DOS. Three of these are built-in and five are user definable. The built in commands include: 1) ' 'F' "to "flip' between DOS 3.2 and 3 . (The user need not re-boot and any program that resides in memory will not be affected by the flip. The DoS version can even be changed within a program!),
'.S^{\prime} ' status command informs you what DOS version is currently active, and 3) ". B ' BLOAD- analysis is also provided to inform the user of the starting at dress and length of the last accessed binary file. DOS PLUS also includes a DOS COMMAND CHANGER program to allow easy customization of Apple DOS con mands to suit individual tastes.

DIBK ORCANIZER II

-NEW-

930.0

48K, Disk II, Apple II / Apple II +
DO II is the fastest and friendliest utility available today for organizing files on an Apple II diskette. DO II provides the following functions: 1) TITLING in Ne mal, Inverse, Flashing, Lower case, and other characters normally not available, 2) CUSTOM REORDERING of the directory, 3) ALPHABETiZING, 4) DYNAM DISPLAY of ALL filenames on a diskette (including deleted files), 5) RENAMING files with the same character options as TITLING, 6) UNDELETING, DELETING, 8) PURGING deleted files, 9) LOCKING (all or some), 10) UNLOCKING (all or some), 11) USE of DOS sectors for increased data storage, and 12 SIMULATED CATALOG to show the modified directory before it is written to the diskette. DO II is completely MENU DRIVEN and attains it's speed by altering RAM version of the catalog. DO II uses a very powerful SMART KEY to automatically locate the next valid filename for any specified disk operation. Compatit with DOS 3.1, 3.2, 3.2.1, and 3.3 as well as MUSE DOS to allow manipulation of SUPER TEXT files! (Note: Updates available for $\$ 5.00$ and original diskette

PABCAL LOWERCABE

-NEW-

\$25.0
$48 \mathrm{~K}+$, Disk II, Apple II / Apple II + , Language System
This is the most recent commercially available LOWER CASE MOD for Pascal for the Apple II. It is the only currently available modification that is compatit with both versions of Pascal (1.0 and 1.1). The Pascal version is automatically checked prior to updating system Apple. If you have any of the hardware low case adapters you can now input the following characters directly from the keyboard: $1 \therefore$ and . This modification does NOT interte with any of the 'Control' character functions implemented by the Pascal environment and will 'undo' any alterations made by other commercially releas moditications.

CUICKLDADEF
 $48 \mathrm{~K}+$, Disk II, Apple II/ Apple $11+\ldots$ (2 Disks)

\$2P5.01

If you find yourself doing the same things over and over -OL . will help you do it faster! OL is a unique disk that lets you load DOS, a language card (optionally and an application program of your choice extremely rapidly. OL boots as a 13 or 16 sector diskette and is easy to set up and use. To change the setup. y merely load your Apple RAM with the new data and use the "RECONFIGURE" option of OL. The next time you boot your QL disk, it will quickly load your nt setup (Language Card, DOS, Application program) into your Apple! QL can reduce the time to perform these functions by up to 80% ! Now that you've re this, you say "But I can already do all of that!' OL doesn'I do anything new -- it just does it MORE CONVENIENTLY and FASTER! Try it, you'll like it

DIBK RECOVERY ['THE BCANNER"]

\$30.01
$48 \mathrm{~K}+$, Disk II, Apple II/Apple II +
This program is long overdue. You need no longer be concerned with the problem of physically damaged disks. Just as "Apple Pascal" provides a " $B /$ BLOCK SCAN", DISK RECOVERY will do a complete scan of your Apple diskettes' recording surface. Damaged areas will be "marked" as used in the di: directory so that no attempts will be made to "WRITE" to a bad sector. The VTOC will be completely redone to reflect both the bad sectors and actual dit usage. A complete report is generated advising the user of all corrections. A resulting 'DISK MAP' is presented for your review. The greatest advantage this program over the other versions is that it can be used on either NEWLY iNITIALIZED DISKS or disks that ALREADY CONTAIN PROGRAMS as well as ti SPEED of analysis. THE SCANNER is fully compatible with both 13 and 16 sector diskettes. This is a must for all Disk II owners!

BUPER DIBK COPY III 930.00 MULTI-DIEK CATALOG III \qquad \$85.00 THE NEW PROTECTOR \qquad 9RSO.00 (Call or Write for Information) LUNAR LANDER II \qquad © 16.00 MABTER MAZE \qquad ©15.00

BENEIBLE BOFTWARE, INC 6619 PERHAM DRIVE / W. BLOOMFIELD, MICHIGAN 480: 313-399-8877

VISA and MASTERCARD WELCOME
Michigan Residents add 4\% Sales Tax
Please add $\$ 1.00$ postage \& handing for each item ordered

Double Barrelled Disassembler

Abstract

Here is a short utllity to make creating disassembly listings easier. This program not only lists from starting to ending addresses, but also formats the listing into two columns for easier reading and less paper usage.

David L. Rosenberg 1706 Ridge Oak Place Memphis,Tennessee 38119

How many L's are there between \$BD00 and $\$$ BFFF? What seems at first to be a ridiculous question actually points out one of the few flaws in the Apple II's ROM Monitor. The problem arises because the disassembler routine only prints twenty lines at a time. This can be a major annoyance if you are doing a lot of long listings.

The program presented here attacks this problem and formats the listing into two columns to minimize wasted paper and make the disassembly easier to follow. Once the program has been BRUN the disassembly function is called by typing "beginning address"."ending address" (CTRL-Y) return. This sequence will disassemble the code from the beginning address through the ending address and print it in two column per page format (see listing 1).

How Does it Work?

This program works by dividing the first part of the object code into two segments, each containing the same number of instructions as there are lines on a page. Then taking one instruction from each piece, it calls the Monitor disassembly routine to print them on the same line. Next the pointers to the instructions are incremented and the program loops to the disassembly portion again. When all the instructions in each segment are done, a form-feed is printed and the next portion of the code is segmented, and the process is repeated until the ending address is reached.

APPLE BONUS

The only problem I encountered was that the Monitor disassembly routine prints a carriage return as the first character each time it is called. Obviously this is not desirable after we go to the trouble of positioning the printer to the start of the second column. To circumvent this the disassembler is called in four separate pieces.

PR1 is called to print the address in the Program Counter ($\$ 3 \mathrm{~A}, \$ 3 \mathrm{~B}$) as four ASCII bytes followed by a dash. PR2 gets the length of the instraction pointed at by PC, and forms an index into the Monitor's op-code mnemonic table. PR3 actually prints the mnemonic along with the appropriate address or hex literal. At this point we must push a $\$ 01$ onto the stack to indicate that this is the last instruction to disassemble. PR4 increments PC to point to the next. instruction then pulls the top value from the stack, decrements it by one and if equal to zero does a return. Since PR4 is jumped to, this return will take us back to the mainline where the program sets up to disassemble the corresponding instruction from column two.

Before calling the Monitor disassembler, PC must contain the address of the instruction to be disassembled. Since we are disassembling and printing two non-sequential instructions on each line, a large part of the program is concerned with swapping instruction addresses in and out of PC. A4 $(\$ 42, \$ 43)$ is used as a work byte to store the column one address when the second column is being disassembled. A3 $(\$ 40 ; \$ 41)$ serves a similar function when the first column is being disassembled. A2 $(\$ 3 \mathrm{E}, \$ 3 \mathrm{~F}$) always contains the ending address of the code to be disassembled.

The subroutine INITA3 is interesting because it calls a Monitor routine at \$F88E to return the length of an instruction. The whole purpose of the routine is to find the address of the nth +1 instruction, where n is the number of lines per page. This is also the start of column two, and so we want this address to wind up in A3. To accomplish this we will call INSDS2 n times and add the resulting length to the address at A3. Note that the length returned is actually one less than the actual instruction length, and therefore, we must increment LEN before adding it to A3. Invalid op-codes are not flagged, but are returned as one-byte length instructions.

0081	0858	4C4E08			T 1		
0082	085B	60	TX	RTS			
0083	085C						
0084	085 C	A90C	FFEED	LDA	\# $\$ 0{ }^{\circ}$;	Print form feed character
0085	085E	20EDFD		JS R	PRINT		
0086	0861	60		RTS			
0087	0862						
0088	0862	A000	STHOOK	LDY	\$ $\$ 00$;	SET THE DOS OUTPUT HOOK
0089	0864	A2Cl		LDX	\$ $\$ \mathrm{C} 1$;	TO \$C100 SLOT 1
0090	0866	8854AA		STX	Hooks +1		
0091	0869	8C53AA		STY	HOOKS		
0092	086 C	A.98D		LDA	\$ \$ 8D	;	Print carriage return to
0093	086E	20EDFD		JSR	PRINT	;	initialize serial card
0094	0871	A980		LDA	\$ $\$ 80$;	Set serial card to
0095	0873	807905		STA	NOVID	;	NO VIDEO MODE
0096	0876	60		RTS			
0097	0877						
0098	0877	A900	UNHOOK	LDA	\$ $\$ 00$;	RESET VIDEO MODE
0099	0879	AOFO		LDY	\$FO	;	AND RESTORE OUTPUT
0100	0878	A 2FD		LDX	\$ $\mathrm{FFD}^{\text {d }}$;	HOOKS TO SCREEN
0101	087 D	8D 7905		STA	NOVID		
0102	0880	8C53AA		STY	Hooks		
0103	0883	8E54AA		STX	H00KS +1		
0104	0886	60		RTS			
0105	0887						
0106	0887	A540	SETPC	LDA	A3	;	SET PC TO A3
0107	0889	853A		STA	PC		
0108	D88B	A541		LDA	A^{3+1}		
0109	088D	853 B		StA	$\mathrm{PC}+1$		
0110	088F	60		RTS			
0.111	0890						
0112	0890	A53A	SETA3	LDA	PC	;	SET A3 TO PC
0113	0892	8540		STA	A 3		
0114	0894	A 5 3B		LDA	$\mathrm{PC}+1$		
0115	0896	8541		STA	A $3+1$		
0116	0898	60		RTS			
0117	0899						
0118	0899	A93C	SETA5	LDA	\#\$3C	;	Initialize line counter to
0119	0898	8545		STA	A5	;	60 --- COUNTS DOWN
0120	089D	60		RTS			
0121	0.89E						
0123	089 E						
0124	089E	A538	CMPCA 2	LDA	$\mathrm{PC}+1$;	COMPARE HI ByTE OF PC to
0125	08A0	C53F		CMP	A $2+1$;	HI BYTE OF A2 (END ADDR)
0126	08A2	9012		BCC	C2	;	< RETURN
0127	08A4	F005		BEQ	C 1	;	- COMPARE LOW bytes
0128	08A6	68		PLA		;	POP RETURN ADDRESS
0129	08A7	68		PLA		;	OFF THE Stack
0130	08A8	407708		JMP	UNHOOK	;	RESET HOOXS AND QUIT
0131	08AB	A53A	C 1	LDA	PC	;	COMPARE LOW bytes
0132	08AD	C53E		CMP	A2		
0133	08AF	9005		BCC	C 2	;	< RETURN
0134	0881	68		PLA		;	POP STACK
0135	08B2	68		PLA			
0136	08B3	407708		JMP	UNHOOK	;	RESET AND QUIT
0137	08B6	60	C 2	RTS			
0138	08B 7						
0139	08B 7	A541	CMA 3A 2	LDA	A $3+1$;	Compare a 3 and a 2
0140	08B9	C 53 F		CMP	$\mathrm{A}^{2}+1$;	Return with carry bit
0141	08 BB	9006		BCC	CMA 2	;	SET OR Clear to
01.42	08BD	D004		BNE	cma 2	;	INDICATE Status
0143	08BF	A 540		LDA	A3		
0144	08C1	C53E		CMP	A 2		
0145	08C3	60	CMA 2	RTS			
0146	08C4						
0147	08C4	A 5 3a	STORPC	LDA	PC	;	Save current value of pc
0148	08C6	8542		Sta	A 4	;	AT A4
0149	08C 8	A 5 3B		LDA	$\mathrm{PC}+1$		
0150	08CA	8543		STA	A4+1		
0151	08CC	60		RTS			
0152	08CD						
0153	08CD	A 542	RSTRPC	LDA	A4	;	restore pc from current
0154	08CF	853 A		STA	PC	;	VALUE OF A4
0155	0801	A543		LDA	A_{4+1}		
0156	08D 3	853 B		STA	$\mathrm{PC}+1$		
0157	O8D 5	60		RTS			
0158	08D 6						
0159	08D 6	A63A	disasm	LDX	PC	;	DISASSEMBLE 1 Instruction
0160	0808	A43B		LDY	$\mathrm{PC}+1$;	AT PC USING MONITOR
0161	O8DA	2099 PD		JSR	PRL	;	disassemble routine in
0162	O8DD	2089F8		JSR	PR 2	;	FOUR PARTS
0163	08E0	2003F8		JSR	PR 3.		
0164	08E3	A901		LDA	* $\$ 1$;	Set counter on stack for
0165	O8E5	48		PHA		;	NUMBER OF INSTRUCTIONS
0166	0886	$4 \mathrm{C67FE}$		JM P	PR 4	;	ROUTINE SUPPLIES RTS
0167	08E9						

 for Apple, Atari, TRS-80, NEC, Hitachi. . . .
Brdderbund Software is looking for new authors to join its international team of programmers. If you have a product for the micro market, let us show you the advantages of working with our team of design, production and distribution specialists. "- remprom
Call or write for our free Authors Kit today or send us a machine readable copy of your work for prompt review under strictest confidence.

Box 3266, Eugene, Oregon 97403 (503) 343-9024 \qquad

In order to end execution, routine CMPCA2 compares the current value of PC to the value of A 2 (the end address). If it is equal to, or greater than A2, we pop the last return address from the stack and jump to UNHOOK. This effectively disconnects from the mainline and resets the stack to the condition it was at when the disassembler was first invoked. Because the program is called from monitor, the RTS in UNHOOK will result in a retum to monitor.

Making it Work

This program was written for use with an AIO serial card in slot \#1 and a Texas Instruments 810 printer. The routine STHOOK sets the DOS output hooks and disables the serial card's video echo. If your interface is in a different slot, change the LDX instruction at line 89. It is of the format Cn , where n is the slot number. For printers with a software-selectable line width this would be the best place to include the code for this function. The routine UNHOOK is always the last one executed, and so is where you should reset the line width.

The first instruction in the routine TAB controls how far over (in print positions) the second column will start. This can be changed to $1 / 2$ of the line width that you are using (i.e. $\$ 28$ for an 80 -column line). The number of lines per page is set in two places, line 118 and line 177. It can be set to suit your needs, but just be sure it is the same in both places.

If your printer does not recognize $\$ 0 \mathrm{C}$ as a form-feed character or does not have a formfeed, the routine FFE ED will have to be changed. Its only function is to cause the printer to skip to the top of the next page.

Since the program uses standard Apple output routines it can be used, as is, with any printer card (serial or parallel) that does not require a software driver. If you use a print driver routine, change the JSRs at lines $66,79,85$ and 93 to go to your driver entry point. The character to be printed will reside in the Accumulator prior to these calls.

[^1]
FINANCIAL MANA GEMENT SYSTEM

A FABT. EABY TO USE ACCOUNTME SY8TEM DESIMED FOR HOME AME BU\&BESS
Enter an ontire month's CHECKING, CHARGE CARD, and CASH accounts in just a tew minutes using personalized macro lists. INSTANT ERROR CORRECTION. Audit all files by Code and Month with year-to-date totals.

- perfect for tax accounting
- SELF PROMPTING, ERROR AVOIOING ENTRY SYSTEM with 1 to 3 KEYSTROKE ENTRIES and AUTOMATIC DATE, CODING and NUMBER SEQUENCING.
- Printer routines for listing disk files, balance reconcile, search, and audit reports. Configure program to match almost ANY PRINTER.
- Enter your own ITEM and CODE MACROS, up to 100 each.
- Make specific and expanded searches employing complete use of macro lists
- 48K with ROM APPLESOFT and DISK required, (printer optional)
- PRCEE E295

FINANCIAL MANAGEMENT SYSTEM II

aLL TME ABOVE FEATUNES PLU8 -

- NEW BUDGET MANAGER - Plan, balance, and review your budget. Then generate COMPLETE reports with summation for any 1-12 month period. - SINGLE or DUAL DISK compatible. Configure program to either disk sytem. * PICE: \$0.5

GROCERY LIST

Shoppers will INSTANTLY be able to use this easy, self-prompting program. Scan a file of up to 500 USER DEFINED TTEMS. Choose those needed with a singte key-stroke. Then print a shopping list ORGANIZED BY TABLE NUMBER, SECTION, or four letter code such as "DARY", "BAKE", or "DELI".

- 48K APPLE with disk and printer required. (APPLESOFT)
- PRICE: 818.S5

D R JARVIS COMPUTING

 1009 CADIZ DA. - SIMI, CA 93005 PHONE ((005) 526-0151Check, VISA or MASTER CARD accepted. DEALER INQUIAIES INVITED

A STATISTICAL ANALYSIS AND FILE MAINTENANCE SYSTEM FOR THE APPLE IITM MICROCOMPUTER

$$
\text { As a Subset Language of P-STAT }{ }^{\top M} 78 . . .
$$ A-STAT ${ }^{\text {TM }} 79$ computes:

FREQUENCIES

bI-VARIATE TABLES - CHI SQUARES CORRELATION MATRICES MULTIPLE REGRESSION RESIDUALS APPLE PLOT INTERFACE APPLE FILE CABINET INTERFACE FILE SORT AGGREGATION REPORT WRITING READS VISICALC FILES A-STAT ${ }^{\text {TM }} 79$
Uses Standard DOS Text File and EXEC's 48 K Version - All programs in Applesoft ${ }^{\text {m }}$

A-STAT ${ }^{\text {TM }} 79$ is available from:
ROSEN GRANDON ASSOCIATES
296 PETER GREEN ROAD
TOLLAND, CONNECTICUT 06084
(203) 875-3541

A-STAT ${ }^{\text {TM }} 79$ on Disk with 95 -page manual... $\mathbf{\$ 1 2 5 . 0 0}$
Apple 1 tm is a trademark of the Apple Computer inc. P.STAT tm 78 is a trademark of P-STAT inc., Princeton, N.J. A-STAT tm 79 is copyrighted by Gary M. Grandon, Ph.D.

LIS P

for the Apple II

Pegasys Systems' new P-LISP interpreter is a full implementation of the well-known Artificial Intelligence language. Written in machine code, this powerful interpreter includes the following features:

- Over 55 functions implemented
- Extensive 45 -page User Manual
- Full function trace
- Fast, efficient Garbage Collector
- Supplied with function editor and pretty-printer
- Runs in 32 or 48 K Apple II or $\mathrm{II}+$ with disk
- ELIZA and other sample programs included

P-LISP is supplied on disk with User Manual for $\$ 99.95$. The manual is available separately for $\$ 10.00$. Please specify DOS 3.2 or 3.3 .

Send all orders and inquiries to:
PEGASYS SYSTEMS
4005 Chestnut Street
Philadelphia, PA 19104
(215) 387-1500

Pennsylvania residents add 6% sales tax
Apple is a trademark of Apple Computer, Inc.
Good software is no longer a myth.

PAYABLE COMING SOON

\star Complete your accounting system with the soon to be releasec A/P package, featuring automatic application of credit and debi memos, open or closed item listing, full invoice aging, ant multiple reports that provide a complete transaction review.
\star Yur trenkeeplay deasn't have to be a bulky, complicitiod precess. II 88c8 foceunting systan is designed fer lizulbility and high parforman with 8 ceat offectiveness sure to bemalit your businessi

YOU NEED EXPERIENCE WORKING FOR YOL

* Packages avallable at your loced Apple dealer.

SMALL BUSINESS COMPUTER SYSTEMS
4140Greprnsood Lincolr. NE 68504(402)467-197

Single-drive Disk Back-Ups for Apple

Abstract

This program allows the owner of a single Disk II drive to back up a disk without worrying about the types of files residing on it. While written for a 48 K machine using DOS 3.2, Ilttle difficulty should be encountered in converting to DOS 3.3 or to a smaller size machine. Tracks containing DOS are not copied.

Steve Emmett
12816 Tewksbury Drive
Herndon, Virginia 22071

The idea for this single disk drive copy routine was born out of the frustration encountered, and time spent, in doing the many LOAD/SAVEs and BLOAD/ BSAVEs necessary to back up disk files. Especially time consuming, and in some cases close to impossible, were the lengthy text files that I encountered on at least one purchased game disk.

The program to be described was the RWTS routine inherent in DOS 3.2 and well documented in The Do's and Don't's of DOS 3.2. RWTS permits the reading and/or writing of any specified track/ sector combination on a disk. (For an excellent description of the disk format, see pages $123-137$ of the DOS 3.2 manual.)

Since I have but one Disk II drive, the philosophy behind the program is to minimize the number of times it is necessary to remove and insert original/ backup disks. Of the 35 tracks on a disk, the first 3 are devoted to the DOS 3.2 operating systems. I chose not to incorporate these 3 tracks in the duplication process. There is no program impediment, however, to their incorporation if desired. The remaining 32 tracks were divided into 4 groups, each containing 8 consecutive tracks. Table 1 lists the group number and the track numbers in both decimal and hex. Each track is composed of 13 sectors (numbered 0-12
or $\$ 0-\$ \mathrm{C}$) with each sector containing 256 bytes. Thus, one track contains 3328 (\$CFF) bytes, and each group contains 26624 ($\$ 6800$) bytes.

Since my Apple II is a 48 K machine, there is no problem in temporarily storing the 26 K of data from each group in RAM during disk backup. While I have not tried it, I see no reason why appropriate changes in the program cannot be made to allow a 32 K machine to accomplish backup using 8 track groups. In addition, with the imminent release of DOS 3.3 and the attending change in sectors per track from 13 to 16 , there is only a minimal change to the program that must be made to allow this program to work on 16 sectors per track.

Program Description

The program to accomplish the backup is written in both BASIC and machine language, with operator interface provided by BASIC. The core of the machine language program is the RWTS routine. To use the RWTS routine, two data blocks need to be defined: the Device Characteristics Table (DCT) and the Input/Output Block (IOB). As described in the DOS 3.2 manual, the DCT remains constant, while variables within the IOB are subject to change, depending upon whether a read or write operation is being undertaken. Since RWTS performs a single track/sector operation each time it is called, the rest of the machine language program is used to increment RAM buffer pointers, track and sector counters, and to switch between read and write.

The machine language program starts at $\$ 800$, and to keep the calculation of RAM buffer ponters simple, it was decided to start the buffer at $\$ 1000$. Since each sector of the disk contains 256 [\$FF) bytes, it is necessary to increment only the high order byte of the buffer pointer. If the low order byte is not zero, the extra programming necessary to implement buffer pointer calculation is eliminated at the expense of the loss of a little flexibility.

Table 1: Track Grouping

Group	Decimal	Hex
1	$3-10$	$\$ 3-\$ A$
2	$11-18$	$\$ B-\$ 12$
3	$19-26$	$\$ 13-\$ 1 A$
4	$27-34$	$\$ 1 B-\$ 22$

Prior to discussion of the machine language program, several definitions need to be made: Variable names for the IOB and DCT follow the same scheme as presented in the DOS 3.2 manual. DIO is the number of original disk inserts that will occur. For a 48 K machine, it is 4 . For a 32 K machine it is 8 . While it is possible to do the backup in less than 8 inserts on a 32 K machine, the increased bookkeeping necessary to count tracks read is not considered worth the effort.

As an example DIO $=6$ could be used, but then $51 / 3$ tracks must be read for each original insert. Or 5 occurrences of 6 tracks per insert need to be read, with a test to insure that the last insert reads only 2 tracks. Either option is possible, but I do not feel that the increased overhead in the software to account for these possibilities is necessary.

The variable TRK is the number of tracks that will be read for each original disk insert. For a 48 K machine, it is 8. For a 32 K machine, it is 4 . SCT is the number of sectors per track that are to be read. Under DOS 3.2 it is 13 . With DOS 3.3 it will be 16. As an aside, this is the only change to the program that must be made in order to run under DOS 3.3 (with the possible exception of the RWTS entry point). The increase in the number of bytes read as a result of SCT

W
 APPLE BONUS

being 16 (with TRK still being 8 and DIO being 4) causes no data contention between the program located at the low side of the memory and the beginning of the DOS at the high side of memory.

CTRK is simply the number of the track currently being read or written. CSCT is the current sector, and CDIO is the current original disk insert count. NTRK is a local pointer that increments between 1 and 8 , and is the current number of tracks processed for the current disk insert.

With these definitions in mind, analysis of the machine language program can begin. (Refer to the listing as needed.)

Locations 800 through 80 C (all locations are presumed to be in hex notation as are all variables) are set aside for constant storage. 80D through 812 is set aside as temporary storage of variables. 813 through 823 is the IOB, and 824 through 827 is the DCT. 828 is reserved for the end of operation flag, and is initially set to zero.

Once the constants have been initialized, the RWTS routine is called. After each call, a check is made to determine if 13 sectors have been read. If they have not, CSCT is incremented. The starting address for the next 256 bytes to be delivered by RWTS is entered into the IOB and RWTS is called again. When 13 sectors have been read, a check is made to see if 8 tracks (NTRK) have been processed. If they have not, CTRK and NTRK are incremented, IOB is updated with the new buffer starting address and track/sector to be read, and RWTS is again called. This process continues until 8 tracks have been read. Once this happens, the program then checks to see if RWTS is in the read or write mode.

If it is in the write mode, a check is then made to see if the original disk has been inserted 4 times. If it has, the program branches to the END routine which resets all temporary storage and sets the end flag. A jump is then made back to the BASIC calling routine. If 4 original disk insets have not been made [and RWTS is in the write mode) then IOB is updated by switching to read mode, resetting the buffer to its default to handle the next set of 8 tracks (that the next sequential track has entered), and resetting the sector and track temporary counters. The program then jumps to the BASIC calling routine where operator instructions are given.

Assembly Listing				
0800	1	;*		
0800	2	;* DISK	K COPY ROUTINE	
0800	3	;* BY	STEVE EMMEIT	
0800	4	;*		
080004	5	DIO	BYT \$04	; OONSTANTS
080108	6	TRK	BYT \$08	
0802 OC	7	SCT	BYT \$0C	
080313	8	IOBLO	BYT \$13	
080408	9	IOBHI	BYT \$08	
080524	10	DCTLO	BYT \$24	
080608	11	DCIHI	BYT \$08	
080760	12	CSLOT	BYT \$60	
080801	13	CDRV	BYT \$01	
080960	14	PSLOT	BYT \$60	
OBOA O1	15	PDRV	BYT \$01	
080B 00	16	BUFLO	BYT \$00	
O80C 10	17	BUFAB	BYT \$10	
O80D	18	;		
O80D 03	19	CIRK	BYT \$03	;TEMPORARY
O80E 00	20	CSCT	BYT \$ ${ }^{\text {S }}$;STORAGE
O80F Ol	21	CDIO	BYT \$01	
081010	22	BUFHI	BYT \$10	
081101	23	NTTK	BYT \$01	
081201	24	RWS	BYT \$ ${ }^{\text {S }}$	
0813	25	;		
081301	26	IBTYPE	BYT \$01	: IOB
081460	27	IBSLOT	BYT \$60	
081501	28	IBDRVN	BYT \$01	
081600	29	INVOL	BYT \$00	
081703	30	IBTRK	BYT \$03	
081800	31	IBSECT	BYT \$00	
081924	32	IBDCTL	BYT \$24	
081A 08	33	IBDCTH	BYT \$ 08	
081B 00	34	IBBEFL	BYT \$00	
081C 10	35	IBBUFH	BYT \$10	
081D 00	36		BYT \$00	
081E 00	37		BYT \$00	
081F 01	38	IBCMD	BYT \$01	
082000	39	IBSIAT	BYT \$00	
082100	40	IBSMOD	BYT \$00	
082260	41	IOBPSN	BYT \$60	
082301	42	IOBPDN	BYT \$01	
082400	43		BYT \$00	
082501	44		BYT \$01	;DCT
0826 EF	45		BYT \$EF	;DCT
0827 D8	46		BYT \$D8	;DCT
082800	47	FLAG	EYT \$00	;END FLAG
0829	48	;		
0829 A908	49	RCALL	IDA \#\$08	
082B A013	50		IDY \#\$13	
082D 20D903	51		JSR \$03D9	;RWTS CALL
0830 AD0E08	52		LDA CSCT	
0833 CD0208	53		CMP SCT	;13 SECTORS?
0836 F015	54		BEQ FSECT	
0838 EEOEO8	55		INC CSCT	
083B EE1008	56		INC BUFHI	
083E AD0E08	57		IDA CSCT	
0841 8D1808	58		STA IBSECT	
0844 ADI008	59		LDA BUFHI	
0847 8DlC08	60		STA IBBUFH	
084A 4C2908	61		JMP RCALL	
084D	62	;		
084D AD0108	63	FSECT	LDA TRK	
0850 CD1 108	64		CMP NTRK	;8 TRACKS?
0853 F023	65		BEQ FTRK	
0855 EEL108	66		INC NTRK	
0858 EE0D08	67		INC CIRK	
085B A900	68		LIDA \#\$00	
085D 8D0E08	69		STA CSCT	;ZERO SECTIOR COUNT
0860 EE1008	70		INC BUFHI	
0863 ADOE08	71		IDA CSCT	
0866 8D1808	72		STA IBSECT	
0869 AD0D08	73	-	LDA CTRK	

(Continued)				
086C 8D1708	74		STA IBTRK	
086F AD1008	75		LDA BUFHI	
0872 8D1C08	76		STA IBEUFH	
0875 4C2908	77		JMP RCALJ	
0878	78	;		
0878 AD1208	79	FTRK	LDA RWS	
087B C901	80		CMP \#\$01	;IN READ MODE?
087D F03C	81		BEQ RTW	
087F AD0F08	82		LDA CDIO	
0882 CD0008	83		CMP DIO	;4 ORIGINAL INSERTS?
0885 F069	84		BEQ END	
0887 EEOF08	85		INC CDIO	
088A EE0D08	86		INC CTRK	
088D A900	87		LDA \#\$00	
088F 8D0E08	88		STA CSCT	;ZERO SECTOR COUNT
0892 A901	89		IDA \#\$01	
0894 8D1108	90		STA NTRK	; RESET RETATIVE TRACK COUNT
0897 ADOC08	91		LDA BUFAB	
089A 8D1008	92		STA BUFHI	-
089D CEl208	93		DEC RWS	; RWS TO READ
08AO ADOD08	94		LDA CTRK	
08A3 8D1708	95		STA IBTRK	
08A6 ADOE08	96		LDA CSCT	
08A9 8DI808	97		STA IBSECT	
08AC AD1008	98		LDA BUEHI	
08AF 8D1C08	99		STA IBBUFH	
08B2 AD1208	100		IDA RWS	
$08 \mathrm{B5}$ 8D1F08	101		STA IBCMD	
08B8 4CEF08	102		JMP RIN	
08BB	103	;		
08BB A901	104	RIW	LDA \#\$01	
08BD 8D1108	105		STA NTRK	
08C0 A900	106		LDA \#\$00	
08C2 8D0E08	107		STA CSCT	
08C5 ADOD08	108		LDA CTRK	
08C8 38	109		SEC	
08C9 E908	110		SBC \#\$08	; CTRK $=$ CTRK-8
08CB 8DODOB	111		STA CTRK	
O8CE ADOC08	112		LDA BUFAB	
08D1 8D1008	113		STA BUFHI	

BASIC Listing

CALL - 936
CALL 2048
PRINT : PRINT : PRINT " **SINGLE DRIVE DISC COPY** "
PRINT : PRINT
PRINT : PRINT "THIS PROGRAM WILL COPY TRACKS 3-34."
PRINT "DOS TRACKS ($0-2$) ARE NOT COPIED."
PRINT : PRINT
INPUT "ENTER THE ORIGINAL DISC AND HIT RETURN"; RS
CALL 2089
IF PEEK (2088) $=15$ THEN GOTO 140
110 IF PEEK (2066) $=1$ THEN GOTO 80
120 INPUT "ENTER THE BACKUP DISC AND
120 INPUT "ENTER THE BACKUP DISC AND HIT RETURN": R\$
130 GOTO 90
140 POKE 2088,0
150 PRINT : PRINT "BACKUP COMPLETED"
160 END

EXEC File Listing

10	$D \$="$	\quad ": REM D\$=CTRLD
20	PRINT	DS: "OPEN DISC COPY"
30	PRINT	DS;"WRITE DISC COPY"
40	PRINT	"INT"
50	PRINT	"BLOAD BDISCCOPY"
60	PRINT "LOMEM:2500"	
70	PRINT "RUN INTDISCOPY"	
80	PRINT D\$;"CLOSE DISC COPY"	
90	END	

If, on the other hand, RWTS is in the read mode, the program then decrements the value of CTRK by 8 , and resets IOB by switching from read to write, entering the new value for CTRK and resetting the buffer address to its default value. The process ensures that the 8 tracks just read from the original disk can now be written onto the back-up disk. The program then exits to the BASIC routine.

This entire process continues until four original/backup disk insertions have been made. Once the program senses that it is in the write mode and that CDIO $=4$, it then branches to the END routine. This routine then exits to the BASIC program declaring that the backup is complete. To back up another disk, all that is necessary is to type RUN.

To facilitate the use of these two routines, the EXEC function of DOS is used. EXEC allows the generation of a text file that is then processed as a series of DOS commands. In order to run the disk copy routines, enter the machine language program and BSAVE BDISCCOPY, A\$800, L11F. Enter the BASIC program and

SAVE INTDISCOPY.

Then generate a text file to be EXEC'ed (see listing). Note that the entry on line 40 depends upon whether your system has the language card. If it does not, remove this entry and prior to performing the disk copy, make certain that your system is in Integer BASIC. To perform the disk backup procedure, simply

EXEC DISK COPY

and follow the instructions!

Steve Emmett is a physicist with 15 years in the computer field. Major interests are system security, simulation design and CAI for very young children. He has an Apple II with language card, one drive, and is presently designing a symbolic assembler/linker/loader.

AICRO

Software for the Apple II and Apple II Plus

BENEATH APPLE DOS

A Technical Manual
By Don Worth and Pieter Lechner
Become an expert on the intricacies of Apple's DOS (Disk Operating System). BENEATH APPLE DOS is the perfect companion to Apple's DOS 3.3 Manual. Containing eight chapters, three appendices, a glossary, an index, and over 160 pages, this manual will serve to completely fill in the many gaps left by Apple's DOS 3.3 Manual. Written for Apple users with DOS 3.3, 3.2 or earlier versions, any Apple disk user would welcome having this carefully written manual at his fingertips.
LEARN

- How DOS 3.3 differs from other DOS versions.
- How disks are protected.
- How to reconstruct a damaged diskette CATALOG.
- How tracks are formatted.
- How to use the disk directly, without DOS.
- How to call DOS's file manager.
- How every routine in DOS works.
- How to customize DOS to your needs.
- How to overcome DISK I/O ERRORS.
- About the "secret" file types - S and R.

INCLUDES .

- Large quantities of excellent diagrams and tables.
- Source listings of useful disk utilities.
- Glossary of over 150 technical terms.
- Exhaustive description of DOS program logic.
- Handy reference card.
- Useful patches to DOS.
- Many programming examples.

Book - \$19.95

CROSS-REF by Jim Aalto
Applesoft programmers will be delighted to have this cross reference utility program in their 'tool kit' of software aids. What can CROSS-REF do to speed and facilitate your Applesoft program development? Consider these functions:
$\begin{array}{ll}\text { VARIABLE CROSS REFERENCE } & \text { LINE CROSS REFERENCE } \\ \text { FIND VARIABLE } & \text { FND LNE NUMBER } \\ \text { REPLACE VARIABLE } & \text { VARIABLE ONLY LISTING }\end{array}$
LINE ONLY LISTING
Features that make CROSS-REF easy to use include:

- Written in machine language, occupies less than 3 K .
- Resides passively in memory while DOS or Applesoft is active.
- Can be loaded with your Applesoft program already resident.
- Very fast - a VARIABLE CROSS REFERENCE for a 16 K Applesoft program can start printing in 5 seconds.
- Contains printer format controls and headers for documentation.
- Prints English language error messages.

Cassette - $\mathbf{\$ 2} .95 \quad$ Diskette - $\$ \mathbf{2 4 . 9 5}$

LINKER by Don Worth.
Turn your Apple II or Apple II Plus into a powerful and productive software development machine with this superb linking loader/editor package. LINKER does the following and much more:

- Dynamically loads and relocates suitably prepared machine language programs anywhere in RAM.
- Combines a main program with subroutines. You can assemble a subroutine once and then use it with as many main programs as you wish.
- Produces a map of all loaded routines, giving their location and the total length of the resuiting module.
- Contains a library of subroutines including binary multiplication and division, print text strings, delay, tone generator, and random number generator.
Linker works with virtually any assembler for the Apple II. Requires 32 K of RAM and one disk drive.

Diskette - $\$ 49.95$
Manual Only - $\$ 19.95$

FASTGAMMON ${ }^{+0}$ By Bob Christiansen.
Sound, hi res, color, and musical cartoons have helped make this the most popular backgammon playing game for the Apple II. But don't let these entertaining features fool you - FASTGAMMON plays serious backgammon. Runs on any Apple II with at least 24 K of RAM.
Cassette - $\$ 19.95$
Diskette - $\$ 24.95$

METEOROIDS IN SPACE"

By Bruce Wallace
We have taken our popular space game, formerly called Asteroids in Space, and made some important improvements. To accent these improvements we have given it a new nameMETEOROIDS IN SPACE. Your space ship travels through a shower of deadly meteoroids. If your ship is hit, it will be destroyed, so you use your laser gun to blast the meteoroids. Big meteoroids shatter into smaller meteoroids when hit, and the smaller ones are usually faster and just as deadly. From time to time you will encounter an alien space ship whose mission is to destroy you, so you'd better destroy it first. All the action is displayed in fast, smooth, high resolu-
 tion graphics, accompanied by sound effects. You now can control your ship usin of two options - the Apple game paddles or the keyboard. One of the game p buttons controls the laser fire. In METEOROIDS IN SPACE, the spaceship's ve gradually decreases unless more thrust is applied, adding an element of control new to this version is a hyperspace feature - translate instantly to another spot galaxy. The game is over when five of your ships have been destroyed. An addi ship is added for every 10,000 points you score. Runs on any Apple II with at leas of RAM and one disk drive.

Diskette - $\$ 19.95$

ASTROAPPLE" ${ }^{\text {T4 }}$ by Bob Male.

Your Apple computer becomes your astrologer, generating horoscopes and forecasts based on the computed positions of the heaventy bodies. This program offers a delightful and stimulating way to entertain friends. ASTROAPPLE produces natal entertain friends. ASTROAPPLE produces natal
horoscopes (birth charts) for each person based on his or her birth data. Any two people may be compared for physical, emotional, and intellectual compatibility. The program is written in Applesoft BASIC with machine language subroutines. It requires either RAM or ROM Applesoft and at least
 32 K of memory.

Cassette - $\mathbf{\$ 1 4 . 9 5}$ Diskette - $\mathbf{\$ 1 9 . 9 5}$

FRACASTU by Stuart Smith.
A fantastic adventure game like no other! Up to players can participate in FRACAS at the same Journey in the land of FAROPH, searching for hi treasure while warding off all sorts of uniriendly dangerous creatures. You and your friends can cor with each other or you can join forces and gang up o monsters. Your location is presented graphically and s effects enliven the battles. Save your adventure on dis or cassette and continue it at some other time. Both in BASIC and Applesoff versions included. Requires at $32 K$ of RAM.
Cassette-\$19.95 Diskette-\$24.95

BATTLESHIP COMMANDERT" by Erik Kilk and Matthew Jew.

A game of strategy. You and the computer each start out by positioning five shi different sizes on a ten by ten grid. Then the shooting starts. Place your volleys skil - a combination of logic and luck are required to beat the computer. Cartoons: the ships sinking and announce the winner. Sound effects and flashing lights alsc to the enjoyment of the game. Both Applesoft and integer BASIC versions are incli Requires at least 32 K of RAM.

Cassette-\$14.95 Diskette-\$19.95

Also by Don Worth

BENEATH APPLE MANOR - Adventure. Uses integer BASIC.
Cassette - $\$ 14.95$ Diskette - $\$ 19.95$
BABBLE . Fun with words, sound, and graphics.
Cassette - $\mathbf{\$ 1 9 . 9 5}$ Diskette - $\mathbf{\$ 2 4 . 9 5}$

QUALTTY SOFTWARE
6060 Reseda Blva.. Suite 105, Reseda. CA 91335 (213) $344-6599$

Now exclusive distributors for products from The Software Factory, Newhall, California *Apple Il and Apple II Plus are trademarks of Apple Computer, Inc.

WHERE TO GET IT: Call us at (213) 344-6599 for the name of the Quality Soft dealer nearest you. If necessary you may order directly from us. Mastercarc Visa cardhoiders may place orders by telephone. Or mail your check or bank number to Quality Software, 6660 Reseda Blvd., Suite 105, Reseda, CA 9$]$ California residents add 6\% sales tax. SHIPPING CHARGES: Within North Am orders must include $\$ 1.50$ for first class shipping and handling. Outside I America the charge for airmail shipping and handling is $\$ 5.00$. Pay in currency.

Enhanced Input Routine

Getting data into a program is one of the most important aspects of program development. This routine for the Apple does it all.

Bruce A. Robertson
1 Vanhurst Place
Ottawa, Ontario
Canada, K1V $9 Z 7$

In professionally-written software, great care is taken to provide the program user with as much flexability as possible, as well as making the program easy to maintain. By having all input controlled by a single routine, many lines of code may be eliminated, input can be standardized, program control is more modular and in most cases the user of an interactive system is presented with a cleaner, more readable display.

The input routine shown in listing 1 is an adaptation (in Applesoft) of an input routine that will accomplish all of the above. Although it appears large at first glance, once the remarks are removed, it is actually quite small and very manageable. The large number of remarks were included to make the routine easy to understand.

This routine uses standard BASIC terms and could be keyed into any system using a variety of versions of BASIC.

From the User's Viewpoint

Anyone using a program containing this input routine has considerable power over program execution. For example, programs may be run to obtain intermediate results. The user can then back up and re-insert new data based on the results previously obtained. In a program that has a repetitive sequence where many of the prompts are repeated, only one actual input, containing the responses to all the questions, needs to be made.

To accomplish this, two characters are reserved for use by the input routine. The slash, "/", is used as a delimiter to separate multiple answers to a prompt. The question mark ' $?$ "', when it is the first character, is used as a signal to back up to the previous prompt. A carriage return is interpreted as acceptance of the prompt default.

To illustrate, consider the following prompt sequence:

> WHAT IS YOUR NAME (END PROGRAM)?
> WHAT IS YOUR AGE (25)?
> WHAT IS YOUR PHONE NUMBER (NONE)?

These prompts could be entered one at a time, or using the power of the input routine as:

> WHAT IS YOUR NAME (END PROGRAM)? JOHN SMITH/ $22 / 555-4652$

The program would then continue and print out the rest of the display as:

WHAT IS YOUR AGE (25)?22
 WHAT IS YOUR PHONE NUMBER (NONE)?555-4652

If a list of names, ages and telephone numbers are being entered, a great deal of time could be saved by making only one entry. If the entries are being made one at a time, a mistake in the name, that is not discovered until the age is about to be entered, may be corrected by typing a "?" in response to the age prompt:

WHAT IS YOUR AGE (25)??

Whereupon the program would back up on the screen as well as in the program logic to the prompt:

WHAT IS YOUR NAME (END PROGRAM)? JOHN SMITH

with the cursor positioned on the " T " in " JOHN ". The correct response is now typed in and the program is continued.

The user has one other command that is recognized by the input routine - the word "QUIT." If the word "QUIT" is entered as the sole response to any prompt, then program execution is immediately transferred to whatever closing routine is provided by the program, and an orderly exit is completed. To the user this could mean a quick chaining back to a controlling program or menu.

The input routine also allows the sensing of default inputs and provides an easy method for the user to enter oftenused responses. As can be seen from the prompts above, a default answer is provided for each of the questions. These defaults are chosen to provide the mostused or least-harmful responses to each input request. This allows the user to progress through the program by simply pressing the carriage return for most inputs.

How It Works

Although there are many remarks in the listing to explain the operation of the routine, the following line-by-line explanation will clear any doubts and will attempt to highlight the reasoning behind the code. Line 905 - BACKUP is the variable used by the mainline of the program to indicate whether or not it is necessary to back up through the program. DISPLAY is used by the input routine to decide if it is necessary to print the present response on the terminal. If a multiple entry response is given, the second and later portion of the response must be printed when the appropriate prompt is printed. However, since they will not be keyed in from the keyboard and echoed on the screen they must be printed by the program. DISPLAY gives the signal to the routine to print the response. ALPHA, NUMERIC and DFAULT are flags used to determine if the current response is alphabetic, numeric, or acceptance of the default.

APPLE BONUS

The next command in line 905 determines if the actual INPUT command should be skipped by testing to see if anything is left over from previous input. If there is something left over, it equates the input variable, ANSWER\$, to everything that is left over. Provided the IF condition test is true, the GOTO statement is executed and the INPUT command is skipped.

Line 910 accepts the program input into ANSWER\$ and resets the DISPLAY variable to indicate that it is not necessary to print the response on the screen. Line 915 takes care of problems caused by successive default entries by placing a null character at the start of the input string. At line 920 the length of the input is found, and then the first character of the input is picked off and tested to see if it is the back-up signal character. The character tested for is the question mark "?". This was chosen because it is on the same key as the other special character that is used by the input routine, and because it is very unlikely that it would be the first character in any input string. It is coded as a CHR\$(63) rather than as "?" only to show that any character may be used, including control characters.

If the back up signal is detected, the input statement and any pending responses are zeroed to eliminate possible errors when the input routine is next entered. Since under this condition, no further processing is required, an immediate RETURN to the mainline of the program is executed. Line 925 checks to ascertain if the current response is a multiple entry input. To do this, an in-string search is done for the input delimiter, the slash - "/"'. The slash is an arbitrary choice and could be any character desired, except the colon and the comma, which are used by the Apple monitor. The search is carried out for the full length of the response.

The search is conducted in a loop and only the first delimiter is of interest. If the character being examined is not a delimiter, it is of no interest and the next character is taken. Successive GOSUBs to the input routine will search for successive delimiters in any multiple entry input.

At line 930, if a delimiter has been found, the input string is split into the portion ahead of the delimiter, and everything afterwards. The left part contains the current answer and the right part is the remainder of the response. It is only necessary to find one answer at a time, so a GOTO is executed to exit

from the search. At line 940, if a delimiter has not been found, the program completes the loop and transfers the entire input to the routine output string. The string holding anything left over is zeroed because the last response of a multiple entry input would fall through to line 940, and OVER\$ would still contain this last response on the next entry to the input routine.

Line 945 causes the current ans of a multiple entry input to be printe response to a prompt, as if an INF command had actually been execu: This is necessary because line $91($ skipped on subsequent entries to the put routine if more than one answe detected. It is important to note that variable DISPLAY need not be equa to anything. Applesoft, in a conditic

Listing 2
*** EXAMFLE DF USAGE ***
90
HOME : FEM CLEAR SCREEN
100 UTAB(10):FFINT WHAT IS YOUF NAME SENI FROGFAM : ; : GOSUE 900
:FEM ESTAELISH SCREEN FOSITION
FFIINT FFOMFT ANI GET INFUT
IF. BACKUF OR LIFAULT THEN GOTO 32000
:FEM 32000 IS STAFIT OF CLOSING SEQUENCE
THIS EACKS OUT THE TOF OF THE FROGRAM
IF ALFHA $=0$ THEN OUER $\$=\cdots$
:GOTO 100
: FEM MINI EIIT - ENSURE INFUT ALFHAEETIC
NAME $\$=$ REFLY $\$$
:REM SAVE INFUT

UTAE(12): FFINT "WHAT IS YOUR AGE © 25 : ; : GOSUE 900
:FEM ESTABLISH SCREEN FOSITION
FRINT FRKOMFT ANI GET INFUT
IF FACKUF THEN GOTO 100
: FEEM BACK UF'
IF IIFAULT THEN AGE $=25$
: GOTO 190
: FEM LIEFAULT UALUE
IF NOT NUMEFIC THEN DUEF: $s=$ " : GOTO 140
: REM MINI EIIT - CHECK IF INFUT NUMEFIC
AGE $=$ UAL (FEFLYY)
:FEM SAUE AGE
190
.... ETC.
test, need only determine if the condition is true. In the absence of an equal sign the test is true if the variable has any value other than zero.

At line 950 the word "QUIT'" provides a shortcut through the program to the closing sequence, which is very useful when testing or maintaining a
responses are possible, or when a single character is sufficient to distinguish between a series of inputs. This string is tested to determine whether the current answer is a default response. At lines 960,965 a miniscule edit is performed to determine if the first character in the current answer is alphabetic or numeric. The appropriate flag is set for use by the program mainline. Any small edit can be carried out in the input routine with the edit either hard-coded as shown or passed to the routine as a variable. However, editing of a more substantial nature should be placed in a separate routine.

How to Use It
Listing 2 shows the type of coding necessary to effectively use the input routine. Each mainline input should request only one input, provide a default, test for the backup flag and the default flag, and save any input or default in the appropriate variable. The input routine provides six outputs: REPLY\$, SMALL\$, BACKUP, ALPHA, NUMERIC and DFAULT. Use of these outputs in an effective manner will provide positive program control and will benefit both user and programmer. Screen addressing should be used for all prompts to allow for over-printing of prompts when backing up so as not to clutter up the display with repeated prompts.

The Apple computer does not allow use of the ELSE statement, so each test of a flag must be on a separate, numbered line. On systems where the ELSE statement is allowed, all flag tests can be in case structure on the same numbered line as the prompt.

Summary
The INPUT ROUTINE is an extremely useful addition to any subroutine library and its use will certainly improve program control in new program development. It is selfcontained and can be plugged into existing code with a minimum of effort. Programs using this routine will increase their through-put and improve user acceptance. A bit of practice will soon show you the power and limitations that can be expected using this routine. Good programming!

Bruce A. Robertson is an electronic specialist with over 20 years experience. He has been programming since 1977 and is currently employed by the Department of National Defense in the Directorate of Computer Applications Development as an applications programmer. He has owned an Apple II Plus computer for over a year.
character output from the routine that is most useful when "yes" or "no"
program. It can also be used, if the closing sequence is properly coded, to loop to the start of the program, rather than going through a long series of prompts or exiting from the program run.

At line 955, SMALL\$ provides a one$\underline{a^{*}}$

DUAL DOS ROM FOR APPLE [[*

SWITCH FROM ONE DOS (3.2 or 3.3) TO THE OTHER WITHOUT BOOTING

DUAL DOS ROMS - No gadgets or unsightly switches hanging from your disk controller, no software to fun, no memory space used to store the other DOS, does not need the use of the 3.2 Proms (for those of you who purchased a disk drive with 3.3 DOS). Utilizes the standard 3.2 .1 and 3.3 DOS, no special software (Muffin/Demuffin) to move your programs to and from 13 and 16 sector disks, no system pointers are changed, and is unaffected by any DOS commands. This invaluable utility is contained in two ROMs, which when plugged into MC's Romplus* or the Andromeda ROMBoard*, will be permanently imbedded in your Apple's memory and waiting for instant access. The length of time it takes the Apple to perform a carriage return is about how last it takes to switch from one DOS to the other. Both ROMs have their own intelligence which allows one ROM to find the other, in order for them to toggle between either DOS. Either ROM can be initialized first. If the 3.2 ROM is initialized first the Applesoft Ampersand command can be used to toggle or flip from one DOS to the other. On the otherhand, it you wish to preserve the existing Ampersand command vectors, the 3.3 ROM can be initialized lirst. The toggle or flip between DOS can then be accomplished by a simple CALL command from either Basic or Direct trom the Monitor. Any program that is in memory will not be affected by the flip between DOS. The flexibility of toggling either DOS lends itself very easily to be done directly from within your own programs. Diskettes can be initialized from either DOS and 13 sector disks will have the faster INIT routine as part of its DOS. DUAL DOS ROMS are not recommended for use with disk drives that are contigured with 3.2 Proms. Will operate with FP, INT, or LC and requires 48 K , DOS 3.3 , and MCs Romplus or Andromeda's ROMBoard.

OTHER ROMS AVALLABLE: AA ROMS are compatible with MC's Romplus or Andromeda's ROM Board.)

- FP RENMMBERMERGE ROM -ADple Computer's infamous renumber program . .
- BAsics ROM - Will boot standard, special, and dedicated 13 sector disks. .
835.96

FP EITROM - Global search, change, and remove. (Works jointly with PLE)
8535.95

- COMMAND Rom - Catalog Command Menu and Disk Map.
\$35.95
DESX COPY/SPACE ROM - Duplicates 13 or 16 Sector Disks
958.98
'YOUR' PLE ROM - Your Customized Program Line Editor in Firmware
. 93.95
ORDER 3 OR MORE (Pual DOS counts as Mns) AND DEDCCT 10\% OF YOUR TOTAL ORDER. (Check or M.0.) Visa or MasterCard Accepted
SOFT CTRL SYSTEMS, Box 599, wEST MLLFORD, NJ 07480
*REGISTERED TRADEMARK
ALL FIRMWARE IS COPYRIGHTED

DOUBLE DOS Plus-a piggyback board that plugs into the disk-controller card so that you can switch select between DOS 3.2 and DOS 3.3. Works with the language system eliminating the need in many cases to boot the BASICs disk. Also eliminates the chore of converting all of your 3.2 disks to 3.3

WHY IS DOUBLE DOS PLus better?

- Nothing needs to be soldered, just plug in and go.
- Since all four ROMS are used, all software will work, even early 3.1 DOS.
- Because the ROMS fit on the back of the board, it has the thinnest configuration allowing full use of slot \#7
- One set of ROMS is powered up at a time, thus saving power.
- Full 90-day warranty from TYMAC.

NOTE: APPLE is a registered trademark of APPLE Computer, Inc., Cupertino, CA. DOUBLE DOS Plus requires APPLE DOS ROMS

OTHER UNIQUE PRODUCTS FROM MICRO-WARE DISTRIBUTING INC THE APPLE CARD-Two sided 100% plastic reference card for the Apple cc Loaded with information of interest to all Apple owners
PARALLEL PRINTER CARD-PPC-100-A Universal Centronics type paralle board complete with cable and connector. This unique board aliows you to turn 0 the high bit so that you can access additional features in many printers. Use with ANADEX, STARWRITER, NEC. SANDERS. OKI, and other with standard Ce

THE DOUBLE BOOTER ROM-Plugs into the empty D8 Socket on the Appl board or the Integer ROM Card to provide a 13 sector boot without using the BA: DoubleBooter may also be used in the MOUNTAIN HARDWARE ROM PLUS b chip will not work in a plus machine unless it contains an integer board or a 1 board
DISK STIX-Contains 10 dozen diskette labels with either 3.3 or 3.2 designati for program names and type also

SUPER SEA WAR-Hires battleship type simulation
ULTIMATE XFER—A telephone software transfer program, uses DC Hayঞ micromodem
ROAD RALLYE-Hires driving game with 5 different full screen tracks
MISSILE CHALLENGER-Hires arcade type game where you defend your c falling missiles. 8 levels \& wites name \& high score to disk
SUPER PIX-Hires screen dump for the EPSON MX-80, inverse or normal, large page graphics in 2 orientations. Needs Tymac PPC-100 Printer board or we wil your EPSON board for $\$ 25$
GRAPH-FIT-A hires graphing program that produces bar charts, pie charts graphs. Has auto scaling feature too

MICRO-WARE

DISTRIBUTING INC.
P.O. BOX 113

POMPTON PLAINS, N.J. 07444
201-839-3478
DEALER INQUIRIES INVITED!!

Binary File Parameter List

Abstract

This utility program will list the address and length, in both hex and decimal, of all binary files on a glven disk. It will also calculate the nurnber of free sectors available on the disk. The utillty works equally well with both DOS 3.2 and DOS 3.3.

Clyde R. Camp
3518 Wildflower Lane
Johnson City, Tennessee 37601

Although Apple DOS 3.2 is a relatively powerful Disk Operating System, it is geared primarily towards BASIC file management, and is somewhat short on capabilities for machine language or binary file management. Among other things, it is left to the user to remember the address and length of a binary file [BFILE] when using BSAVE and BLOAD.

This can be very aggravating when it becomes necessary to copy or relocate a BFILE, or to know where it was originally located, or what its length is. Although one can always BLOAD the file and then PEEK into page zero RAM to find the start and length parameters, this must be done manually, in immediate mode. Any program to do the PEEKing could be inadvertently overwritten by the BLOAD operation, and to blindly BLOAD one of these files could wipe out existing programs, alter data bases, or even zap DOS itself. Even though an arbitrary starting address can be specified, an unknown length is still likely to cause trouble by overwriting needed portions of RAM.

The program listed here (listing 1) avoids all of these problems by utilizing the DOS RWTS subroutine to search for and list all BFILE parameters (name, address, length) on a given disk. (In addition, it calculates the total number of remaining free sectors on the disk, which is a very usefull piece of information.] It accomplishes this by searching
the disk directory for binary files. Once a BFILE is located, the first four bytes of the first sector of the file are examined. These bytes contain the start and length parameters as follows:
Byte 0 Least significant byte of address Byte 1 Most significant byte of address Byte 2 Least significant byte of length Byte 3 Most significant byte of length

Since at most, only one sector of the BFILE need be loaded (the first sector), only a known amount of buffer storage is needed (256 bytes to be exact) and the hazard of overwrite is prevented.

The program was written for an Apple II with 48 K and Applesoft firmware, but it should run on any DOS system in which the user can utilize page one Hi-Res graphics. This is because the machine language routines involved reside in that memory area. Please note that most GOSUB and GOTO statements refer to REMs for documentation purposes. So, when entering the program, be sure to include at least these REM statements to prevent a lot of MISSING STATEMENT error messages.

(Continued)

Table 1: Input/Output Control Block (IOB)

Hex Address	Hex Data	Function
2300	01	IOB type indicator
2301	60	Slot number $\times 16$
2302	01	Disk drive number
2303	00	Expected volume number
2304	11	Initial track number
2305	00	Initial sector number
2306	1123	DCT address
2308	0024	Buffer address
230A	0000	Not used
230C	01	$\begin{aligned} & \text { Command code } \\ & 11=\text { READ } \\ & 2=\text { WRITE } \mid \end{aligned}$
230D	00	Error code
230E	FE	Actual volume number
230F	60	Previous slot $\times 16$
2310	01	Previous drive

Table 2: Device Characteristic Table (DCT)

Hex	Hex	
Address	Data	Function
2311	00	Device type code
2312	01	Phases per track
2313	EF	Time count
2314	D8	Time count

The rest of this explanation assumes that the reader is somewhat familiar with Chapter 9 and Appendix C of the DOS manual. If not, he should read it before continuing with this article so that the terminology is familiar.

When the program is RUN it first sets HIMEM, then POKEs the first of
three machine language programs into the protected area and asks the user to insert the disk to be searched into the drive. (The normal default drive of slot 6 , drive 1 , is used. To utilize another, line 1300 should be changed.) Subroutine 960 then sets up the RWTS driver, IOB and DCT described on page 94 of the DOS manual.

520 EN
540 REM DISPLAY FILE PARAMETERS
620 FOR I = 3 TO 15
630 PRINT CHR§ (PEEX (B3 + I));: NEXT I
$680 \mathrm{TN}=\operatorname{PEEK}$ (B3):SN = PEEK (B3 + 1): GOSUB 880
730 TN $=$ PEEK (BASE +12):SN $=$ PEEK (BASE +13): GOSUB 880
.780 A $=$ PEEK (BASE) + PEEK ($1+$ BASE) * 256:AA $=A:$ IF AA $>$ TC THEN AA $=$ AA - $2^{\wedge} 16$
$790 \mathrm{~L}=$ PEEK (BASE +2) +256 * PEEK (BASE +3): LL $=\mathrm{L}:$ IF LL $>$ TC THEN $\mathrm{LL}=\mathrm{LL}-2^{\text {^ }} 16$
800 HTAB 15:2 = USR (AA): PRINT " ("A")";
810 HTAB 28:2 = USR (LL): PRINT " ("L")"
820 LC = LC +1
860 TN $=$ CT:SN = CS: GOSUB 880: RETURN
880 REM READ TRACK/SECTOR
940 POKE TA,TN: POKE SA,SN: POKE RD,1: CALL RWDRV: RETURN
960 REM SETUPRWTS DRIVER
1090 HIMEM: 8191
1130 DATA 169,035, 160,00,32,217,3,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0: REM 19 ZEROES
1140 DATA $1,96,1,0,17,0,17,35,0,36,0,1,1,0,254,96,1,0,1,239,216$
1150 FOR I $=8448$ TO 8474: READ J: POKE I,J:: NEXT
1160 FOR I = 8960 TO 8980: READ J: POKE I,J: NEXT
$1290 \mathrm{FWADV}=8448: \mathrm{TA}=8964: \mathrm{SA}=8965: \mathrm{RD}=8972$
$1300 \mathrm{SL}=6: \mathrm{DR}=1$
$1310 \mathrm{DA}=37148$
1320 POKE DA,SL * 16: POKE DA + 14,SL * 16: POKE DA + $1, \mathrm{DR}$: POKE DA +15 , DR
1330 REIURN
1350 REM DETERMINE FREE SPACE
1390 DATA $76,0,032,32,12,225,165,160,160,0,162,9,24,42,16,1,200,202,208$, $249,165,161,162,9,24,42,16,1,200,202,208,249,169,0,32,242,226,96,96$
1400 FOR I = 10 TO 12: READ 2: POKE I,Z: NEXT
1410 FOR I = 8192 TO 8227: READ 2: POKE I,Z: NEXT
$1490 \mathrm{CNT}=0$
1500 FOR I = 56 TO 195 STEP 4:V $=$ PEEK (BASE +I) * $256+$ PEEK (BASE + $I+1): V=\operatorname{INT}(V / 2)$
1510 CNT = CNT + USR (V): NEXT : RETURN
1530 REM SETUP DEC-HEX CONV.
1560 DATA $76,0,032,32,12,225,165,160,166,161,32,65,249,96$
1570 FOR I = 10 TO 12: READ 2: POKE I,Z: NEXT I
1580 FOR I = 8192 TO 8202: READ Z: POKE I,Z: NEXT I
1590 RETURN

Figure 2: Memory Map

Listing 2

Listing 2			
i** ${ }_{\text {\% }}{ }^{*}$ RWTS DRIVER			
	RWTS	ECU \$3D9	
	IOBADD	EQU 2300	; IOB ADDRESS
2100	ORG \$2100		
2100			
2100	;		
2100 A923		LDA / IOBADD	
2102 A000		LDY IOBADD	
2104 20D903		JSR RWTS	
210760		RTS	;RETURN TO BASIC

* Listing 3				
$\begin{aligned} & \text {; R ROUTINE TO COUNT I'S IN } \\ & ; * \\ & \text { INTEGER } x \end{aligned}$				
AYTOFP EQU \$E2F2				
	BYTA EPZ \$AO			
	; ${ }^{\text {BYTB }}$ EPZ \$AL			
2000 ORG \$2000				
2000	;			
2000 200CE1		JSR	xtoint	; CONVERT X TO 16-BiT INTEGER
2003 A 5AO		LDA	BYTA	; A=IST BYTE OF INTEGER
2005 A000		LDY	\$ $\$ 00$; $\mathrm{Y}=\mathrm{BIT}$ ACCUMULATOR
2007 A209		LDX	1509	; $\mathrm{X}=\mathrm{LOOR}$ COUNTER
200918		CLC		; INITIALILE CARRY
200A 2A	Lbla	ROL		; LOOK AT NEXT Bit
20081001		BPL	Lblb	; SKIP ACCUMULATOR IF MSB is zero
200 CB		INY		:ELSE BUMP BIT ACCUMULATOR
200 CA	LBLB	DEX		; DECREMENT LOOP COUNTER
200F dof9		bNE	Lbla	; LOOP TILL DONE
2011 A5A1		LDA	BYTB	;A=2ND BYTE OF INTEGER
2013 A209		LDX	\# 509	; ${ }^{\text {Now }}$
201518		CLC		; repeat
2016 2A	LBLC	ROL		; Above
20171001		bPL	Lbld	; FOR
2019 C8		iny		: SECOND
201A CA	LBLD	DEX		; BYTE
2018 DOF9				; $\mathrm{A}=0 \mathrm{FOR}$ FP CONVERSION
201 F 20F2E2			AYtofe	; Convert a,y to floating point
202260		RTS		;RETURN TO BASIC

Listing 4

The RWTS Driver (shown in listing 2) serves to load the 6502 microprocessor (registers A and Y| with the IOB address, and then ISR to the entry point of the RWTS subroutine. The Input/Output control Block (IOB) contains the critical operating parameters for the RWTS subroutine. These are initialized as shown in table 1. The Device Characteristics Table (DCT) has been placed immediately following the IOB. Its contents are determined by the actual physical characteristics of the disk drive itself, as well as the interface card and DOS. The standard values which DOS uses are also given in table 2.

Line 1090 protects all of this from Applesoft BASIC and also protects the short machine language program at memory address 8192 . This program is one of two which are called by the Applesoft USR (x) function. The USR $|x|$ routine defined at line 1350 (listing 3) is used to calculate the number of free sectors on the disk by utilizing the Track Bit Map found in the Volume table of contents (Track \$11, Sector \$00). Once this has been done the USR $\langle x$) function is redefined (listing 4) to perform decimal to hex conversion. See figure 2 for a memory map.

Referring to figure 1 for the following discussion, the BFILE search begins by picking up bytes 1 and 2 from the VTOC (statement 170). (Note that byte 1 is actually the 2nd byte; the first is byte 0 .) These bytes contain the track and sector numbers, respectively, of the first direc-tory-sector. Once known, that sector is read into the RWTS buffer by line 230 .

Each directory sector contains up to seven directory entries and a link to the next directory sector. This link, in bytes 1 and 2 of each directory sector, is captured by line 280.

Each of the seven directory entries is 35 bytes long, starting at byte 11 of the buffer. Byte 0 and byte 1 of each entry (e.g. buffer bytes 11 and 12 for the first entry) contain the track and sector numbers, respectively, of the Track and Sector List (TSL) for that entry. If both bytes are zero, it indicates that the end of the directory has been reached. If byte 0 contains a 255 (hexadecimal FF), it indicates that the entry was once used, but since has been deleted. Only if both bytes are non-zero and less than 255 is the entry a valid entry.

Once the entry has been determined valid, byte 2 (of that entry) is examined to determine the file type. A " 4 "' indicates an unprotected binary file and a " 132 " indicates a protected file. For
either of these cases, the BFILE name is retrieved from bytes 3 through 13 and the track and sector numbers in bytes 0 and 1 are used to pull in the first sector of the TSL for the file (line 680). (Otherwise, the search continues with the next directory entry.)

The TSL is normally used to link multiple sectors of a program together. For our purpose, only bytes 12 and 13 are of interest. These two bytes contain the usual (by this time) track and sector of the first valid sector of the BFILE. Line 730 then pulls this sector into the buffer.

After picking out the start address and length of the BFILE (lines 780 and 790) and printing them in hex (and decimal), line 860 restores the original catalog sector to the buffer and the search continues.

After the seventh directory entry, assuming that a double-zero end-ofdirectory mark is not found, the next directory sector is loaded and the search continues with that and each succeeding directory sector.

Once the directory search is completed (determined by line 360) the program prints the number of free sectors and terminates.

The routines and techniques presented here can be utilized to implement a variety of "CATALOG" type programs which can be tailored to the user's individual needs. For instance, changing line 940 from "...POKE RD, $1 \ldots$ " to "'...POKE RD,2..." will write the buffer to the designated sector instead of reading from the sector to the buffer. However, a strong word of caution is in order: when debugging this type of program it is extremely easy to erase all or part of a disk. For this reason, always use a scratch disk when "RUNNING" the program (until it is thoroughly debugged] and "SAVE" the program on another disk prior to 'RUNNING".

Clyde Camp has a BSEE from Virginia Polytechnic Institute (1969) and an MS in Computer Science from Southern Methodist University (1974). He has been employed by Texas Instruments since 1969 and is currently Systems Engineering Manager for the Industrial Controls division of Texas Instruments in Johnson City, Tennessee. His system consists of an Apple II with 48 K , single disk, Heathkit printer, Integer and Applesoft ROM.

Our Software Catalog is a listing of unique software available through a wide network of vendors. Just mention you san their ad in MICRO! If you have a software package to announce to other MICRO readers, just send for the proper form.
Complete details will be provided.

Software Catalog P.O. Box 6502 Chelmsford, MA 01824

周膡Uersalلiter \& APPLE II: The Keys to Unlimited Graphics

DRAWING TABLET

Although VersaWriter operates on a simple principle, it produces graphics which match or exceed those of other digitizers. Rugged construction, translucent base, easy to use - plugs directly into APPLE II.

UNIQUE OFFER

See VersaWriter at your local dealer and pick up a copy of our demonstration disk. The complete VersaWriter hardware and software package is a real bargain at $\$ 249$. For more information call or write:

GRAPHICS SOFTWARE
Easily the most capable and complete graphics software for the home computer available. Fast fill drawings in 100 colors. All text in five sizes, compile and display shapes, edit, move and much more!

Versa Computing, Inc. • 887 Conestoga Circle • Newbury Park, CA 91320 • (805) 498-1956

Expressions Revealed, Part 1

Abstract

Assemblers, compilers, and interpreters all have to be able to process expressions. This article, and the visually-oriented Apple II programs included, reveal the inner workings of expression processing scanning, parsing, and translation.

Richard C. Vile, Jr.
3467 Yellowstone Dr. Ann Arbor, Michigan 48105

Almost all programming languages allow the programmer to form a variety of expressions. In fact, expressions are such a "fact of programming life" that few programmers think much about them, beyond their application in programs. Nonetheless, a study of the processing of expressions by translators such as interpreters, assemblers, and compilers provides an interesting and worthwhile look "behind the scenes." In this article we shall present some simple techniques for the scanning, parsing, and translation of expressions. Programs, for the Apple II computer, will be presented which visually reveal the inner workings of some of the classical algorithms in this area.

The Makeup of Expressions

In the world of expressions, the cast of characters consists of operators and operands. Operands are themselves considered to be expressions, with the simplest being constants and variables. Of course, constants and variables represent but a small portion of the entire taxonomy of expressions. Simple expressions may be combined using operators to "make big ones out of little ones" (to paraphrase a well-known saying).

Each expression, great or small, represents a value of some type. One or more operators appropriate to each type
are provided by a language. Table 1 catalogues some of the most common types and operators.

Type \quad Operators	
Integer $+-* /$ MODREM $=\#<><=>=$	
Real $+-* / \uparrow=\#<><=$	
String + (concatenation)	
Boolean AND OR NOT	
\quad Table 1: Types and Operators	

Table 1: Types and Operators

In the abstract, each operator must be applied to operands which are of the same type and are consistent with the type of operands which are expected by the operator. Thus, a relational operator such as $<=$ applies to two numbers of the same type (both real or both integer) and not to logical values such as TRUE or FALSE. Likewise, the boolean operator AND does not apply (logically) to numerical values. Now, in the early days of high-level programming languages, the attitude toward such matters was quite lenient. Operators were allowed to "coerce" their operands into an appropriate form. After all, everything was eventually represented in terms of binary numbers inside the computer anyway. So, for example, in BASIC it is legal to write:

$$
\text { IF }(X<\eta) *(Y<Z) \text { THEN ... }
$$

This is so since logical values are represented by the numbers 0 and 1 and may be treated as integers in BASIC. We know that the internal representation of FALSE is 0 , and consequently that the expression $(\mathrm{X}<\mathrm{Y})^{*}(\mathrm{Y}<\mathrm{Z})$ will represent FALSE if either $\mathrm{X}<\mathrm{Y}$ or $\mathrm{Y}<\mathrm{Z}$. Of course, instead of being so clever, we could simply have written

$$
\text { IF }(X<Y) \text { AND }(Y<Z) \text { THEN ... }
$$

instead. Knowledge about how information is represented inside the machine has gradually become less and less necessary in order to use high level
languages effectively. Consequently, the rule of "different strokes for different folks" is strictly enforced in languages like Pascal. Writing the expression ($\mathrm{X}<\mathrm{Y})^{*}(\mathrm{Y}<\mathrm{Z}$) in Pascal will get you a severe scolding from the Pascal compiler. So, we speak of Pascal as a typechecking or type-enforcing language.

While one way of classifying operators is by the types of their operands, another is by the number of operands they require. Ninety-nine and forty-four one-hundredths percent of all operators require either one or two operands. Those requiring two operands are called binary operators, whereas those that require only one operand are referred to as unary operators.

The Meaning of Expressions

In order to be evaluated by a computer, expressions written in a highlevel language must first be translated into a sequence of simpler, low-level instructions. Such instructions may be the machine language for a real processor such as the 6502, or the pseudocode for an imaginary or virtual machine which is imitated by an interpretive program instead of a real processor. Each such instruction will typically manipulate only one or two operand quantities and involve, at most, one operator. In order to make the transition from a higher to a lower level form, we must be able to decide in which order to carry out the individual operations indicated by the original expression. This means that expressions which involve more than one operator must be made unambiguous as to the order of evaluation.

Consider the expression $\mathrm{X}+\mathrm{Y}$ * Z . This expression could mean either of two quantities:
a. the result of adding X and Y followed by multiplication by Z .
b. the result of multiplying Y and Z followed by addition of X .

There is no "correct" choice between these two possibilities, only various conventions or methodologies dictate which choice to make. Each high-level language must select one such convention in order to make its expressions intelligible. Let us consider some of the techniques which may be used.

Left-to-Right Evaluation

This is perhaps the simplest method. The convention is that if we scan from left to right in the expression, then each operator will be evaluated as soon as it is encountered, using the result so far obtained as the "left" operand, and the variable immediately following the operator as the "right" operand. Using this rule will cause our sample expression to be interpreted as indicated by possibility a described earlier. In order to achieve the result indicated by possibility b, the expression would have to be rewritten as: Y * $\mathrm{Z}+\mathrm{X}$.

Very few, if any, languages rely solely on the left-to-right rule. However, nearly all languages do use it in some contexts, as we shall see.

Use of Parentheses to Group Operands

Another simple way to make expressions completely unambiguous is to use "fully parenthesized" notation. This means that enough parentheses must be supplied in order to uniquely specify the two operands of each operator in the expression. For the example under discussion, the two possible meanings given would be written as:

$$
(X+Y) * Z \text { and } X+(Y * Z)
$$

respectively.

Precedence	Operators
4	N0F
2	AND。 OR
3	
Q	口
5	N_{N}
(6)	Q

Figure 1

Figure 2

Precedence Rules

The method of choice in nearly all modern languages is the use of precedence rules. Each operator is assigned a precedence level (or simply, precedence). This establishes a "pecking order' among the operators. When it comes to the evaluation of an expression those operators with higher precedence levels are evaluated first. They take precedence (hence the terminology) over those operators at lower levels. Figure 1 illustrates a typical assignment of precedence levels, in this case for the BASIC language. Using that assignment of levels, the expression $\mathbf{X}+\mathbf{Y}^{*} \mathbf{Z}$ would be considered equivalent to ($\mathbf{X}+$ $\mathbf{Y})^{*} \mathrm{Z}$, since * has a higher precedence than + .

Precedence rules alone do not us ly suffice for common practice, F ever. Two issues are not resolved id rely solely on precedence:

1. How do we decide the orde evaluation of operators w^{\prime}. have been assigned the s precedence level (e.g. ' + ' and in figure 1)?
2. How do we defeat the order plied by the precedence leve we so desire?
The solutions are simple! For the 1 use left-to-right evaluation. For the ond, use parentheses. Thus, using left-to-right rule will tell us that thi pression $X+Y-Z$ should be is preted to mean $(X+Y)-Z$. Likev
we may always write $\left[\mathrm{X}+\left.\mathrm{Y}\right|^{*} \mathrm{Z}\right.$, when we desire the addition to precede the multiplication. Parentheses may be thought of as boosting the precedence levels of all the operators they contain, in order to make them higher than all the operators outside.

Figure 2 summarizes the techniques and conventions under discussion, using the expression $\mathrm{X}+\mathrm{Y}^{*} \mathrm{Z}$ as the example.

Translation of Expressions

The notation used in writing expressions is sometimes referred to as infix notation. This obviously derives from the fact that the operators appear inbetween their operands:

Infix notation is potentially ambiguous as we have seen. Translation of an expression usually replaces the human oriented infix notation with a more machine-oriented notation.

A very common choice for the intermediate representation exists which requires no parentheses at all. It is known as postfix notation and is characterized by the fact that each operator always immediately follows its operands. Thus, the infix expression $\mathrm{X}+\mathrm{Y}$ will be written as follows:

The order of evaluation in a postfix notation expression is always completely specified by a single left-to-right scan. To change the order of evaluation, the order of the operators is changed. Figure 5 shows the two possible postfix versions of the expression $X+Y * Z$, corresponding respectively to $(\mathrm{X}+\mathrm{Y}) * \mathrm{Z}$ and $X+(Y * Z)$.

The fact that postfix notation is completely unambiguous makes it a strong candidate for use as the pseudocode of a virtual machine representation for expressions. Some machines and/or systems go so far as to use postfix notation, or Reverse Polish Notation (RPN) as it is also called in the external representation of expressions as well. For example, the handheld calculators manufactured by Hewlett-Packard require its use.

Also, one computer language which has recently gained much popularity, namely FORTH, requires that expressions and statements, as well, be expressed in RPN. (A description of the FORTH language is beyond our purpose in this article, but we mention it to illustrate the importance and pervasiveness of postfix form.)

Given that it is desirable to use RPN as an internal form for representing expressions, we arrive at the first roadblock: How are parenthesized, infix notation expressions translated into RPN? The answer is embodied in one of the classical algorithms of computer science. Its description will occupy most of the remainder of this article.

The conversion algorithm makes use of a data structure known as a stack. The stack concept has gradually crept into the spotlight, especially since the advent of the microprocessor. A stack is a storage mechanism first of all - it may be used to store objects of computation: numbers, characters, strings, records, etc. It uses a storage discipline known as the "last-in first-out" method: last or most recent item to be stored in the stack is always the first to be available for retrieval. The operations which may be performed on a stack are:

PUSH(Item): This operation causes "Item" to be stored at the TOP of the stack (see below for more on the TOS - "Top Of Stack").

POP(Loc): This operation causes the Item currently stored at the TOP of the stack to be removed from the stack, or "Popped off" the stack and transferred into the memory location represented by "Loc."

The concept of Top Of Stack, abbreviated TOS, may be explained as follows:

$$
\begin{array}{ll}
\text { Top } & \text { The last location in the stack } \\
\text { Of } \\
\text { into which an item was stored } \\
\text { Stack } & \text { is defined to be the Top Of } \\
\text { Stack. When a PUSH opera- } \\
\text { tion is performed, the Top Of } \\
\text { Stack is first advanced one } \\
\text { location, before storing the } \\
\text { Item being PUSHed onto the } \\
\text { stack. When a POP operation } \\
\text { is performed, the Top Of Stack } \\
\text { recedes by one location, after } \\
\text { the Item being POPped off the } \\
\text { stack is transferred. }
\end{array}
$$

When the stack is empty, that is, no items have ever been pushed onto the stack, then the Top Of Stack is conceptually one location before the first location available for the stack. At first this is a bit awkward for some people to comprehend, since it means that the "Top" of the stack is in some sense "outside" the stack. However, since TOS is advanced before the data is stored during a PUSH, this awkwardness is healed by the first PUSH operation that takes place when a stack is used. However, trying a POP on an empty stack will only lead to headache \#95!

When a stack is full, then TOS corresponds to the last location available for stack storage. Thus any further attempt to PUSH an item will cause the stack to "overflow."

All of this may be old hat to many readers, but for the novitiates, figures 6-8 illustrate the above terminology and explanations. Also, if analogies are near and dear to your heart, you may compare a stack to many similar entities in the real world: a stack of papers, a pile of dishes, a stack of pancakes, a railroad siding track, and so on.

Listing 1 presents an Integer BASIC program which implements an interesting game that illustrates simple manipulations using a stack. The object of the "game" is to rearrange a string of digits into a different order. The original string is in the counting order $12 \ldots \mathrm{n}$, where n in our implementation may be, at most, 9. The "goal" or "target" string is a randomly selected permutation of the original. Thus, for example, if $n=5$ the original string will be 12345 and the target string might be 53124 , or any permutation of 12345 .

The rules of the game are quite simple. The original string is scanned from left to right in order to attempt to achieve the rearrangement. Since one

Figure 5

Figure 6: A STACK of Integers

Figure 7: A PUSH Operation
scan may not suffice to achieve the target string, repeated scans are allowed with the intermediate results copied back into the input string. The scanning process allows digits to be PUSHed onto a stack and later POPped from the same stack onto an output string. More precisely, at each stage of a given scan, one digit of the input string will be in the spotlight. This digit must eventually be PUSHed onto the stack, at which point the scan will advance to the next digit. However, if at any point there are

Figure 8: A POP Operation

LSSOP	3
EQLOP	13
ANDOP	12
EXPOP	26
MULTOP	5
PLUSOP	14

Figure 9: A STACK of Records
digits in the stack, they may be POPped (some or all) onto the output string. The output string is added to at its right end, whenever a new digit is POPped onto it. Note that when the stack is empty, the only option is to PUSH the current digit and advance to the next. The input may be copied without alteration to the output by merely repeating the sequence:

PUSH POP PUSH POP ...

for as many digits as there are in the in-
put. Finally, when the scan reaches the end of the string, the stack will be emptied onto the output.

The play of the game involves not only achieving the rearrangement of the original string, but also in doing so with the least number of scans possible. Hint: It is always possible to achieve any target string from the original string $123 \ldots \mathrm{n}$ in at most n scans. This is because it is always possible to put one more digit into its correct position on a given scan.

Returning to the question of converting an infix notation expression to RPN, the translation algorithm we shall discuss will make use of a stack of "operators" to assist in its job. Actually the algorithm needs to keep track of not only what the operators are, but also what their precedence is in the expression being scanned. Therefore, each entry in the stack of 'operators'' will contain two pieces of information: an identification of the operator concerned, and its precedence in the expression. This idea of a stack of "compound" items is illustrated in figure 9. Later we shall present two implementations of the translation algorithm, one in BASIC and one in Pascal. The implementation in Pascal uses a particularly convenient representation of the stack as a Pascal record type.

Infix to Postfix: The Translation Algorithm

The input to the translation algorithm will be an expression in partially parenthesized infix form. The expression will be scanned from left to right and dissected into its component parts:

Operands
 Operators Parentheses

(Blanks embedded in the input will be considered to be insignificant.)

The output of the translation will consist of a string, containing all the operands and operators of the input, but with all parentheses removed. The string will represent the RPN for the input expression.

As the input is dissected, the 'object" being scanned at any point will determine the action to be taken. These objects are also referred to as tokens. It is the job of the scanner to extract tokens. In our implementations of the translation algorithm, the scanner will be quite simple. Each token will be assumed to be only a single character long. The scanner will examine each

```
1. {}{\begin{array}{l}{\mathrm{ TOS }\leftarrow0}\\{\mathrm{ STACK (TOS }\leftarrow\leftarrow{NOOP, -2)}
1. {
    LDONE \leftarrowFALSE
_ while NOT DONE do
        case TOKEN of
            OPERAND: OUTPUT(OPERAND);
            LPAREN: NEST}\leftarrowNEST + 1; 
            RPAREN: NEST }\leftarrow\mathrm{ NEST - 1;
            OPERATOR:
                begin
                        6. NOWP}\leftarrowNEST*10 + PRECEDENCE[OPERATOR); 
                        while NOWP<PRECEDENCE(TOS) do
                            8. POP|OUTPUT);
                                endwhile;
                            7. PUSH[OPERATOR,NOWP];
                        end;
            endcase;
        endwhile;
```

Figure 10: Pseudo-code for Translation Algorithm

Nesting Level:
Absolute Precedence:
Relative Precedence:
$((X+Y) /(Z-(W * U)) \uparrow A) / B$

12		1	2	3		21	0
	4	5	4	5	6	5	
	24	15	24		35	16	5

Figure 11: Absolute vs. Relative Precedence
character and assign it an internal "token number" which may be more convenient for the remainder of the program to manipulate.

Figure 10 presents the essential details of the algorithm expressed in pseudo-code. Various portions of the program have been bracketed and/or numbered in order to provide reference points for further discussion.

1. Initialization

The stack is initially set up with a "dummy entry" which is needed for two reasons:
a. In order to allow the test in the while loop labelled 5 to make sense when no operators have yet been pushed onto the stack.
b. In order to provide a way to stop the same loop when the stack is "emptied out" at the end of the scanning process.

The pair (NOOP, -2) is put onto the
bottom of the stack to accomplish these goals. The nesting level of parentheses is given its initial value of 0 (in the variable NEST), and the logical variable DONE is set to FALSE: we can't be DONE, we've only just begun!

2. Main Program Loop

The fundamental control structure of the algorithm is a while loop (a loop controlled by a condition which is tested before any statements of the loop are executed on each pass through) controlled by the logical expression "NOT DONE." The variable DONE will become TRUE when both of the following conditions are met:
a. The input expression has been completely scanned.
b. The OPERATOR stack has been emptied to the output.

The details of how these tests are carried out in the implementation may be gleaned by studying the actual programs of listings 2 and 3 , which will be presented in part 2, next month.

3. Token Extraction

While in general this process may be as painful as tooth extraction, in our case it is relatively simple. A routine must be provided which picks off the next character of the input and converts it into the internal form that is used by the remainder of the algorithm. In the pseudo-code incarnation this is called SCAN and it is invoked each time at the head of the main program loop. The routine SCAN is actually a function (with no actual arguments) which has its returned value assigned to the variable TOKEN.

4. Translation Actions

The actions taken by the translator at each step depend on the TOKEN found. The pseudo-code uses a case statement to select the appropriate action based on the value of TOKEN. The possible categories of TOKEN are:

```
OPERAND
LPAREN
RPAREN
OPERATOR
```

For each of these categories, the case statement specifies corresponding actions:
a. OPERANDS are immediately copied to the output.
b. Left parentheses (LPAREN) cause the variable NEST to increase by 1.
c. Right parentheses (RPAREN) cause the variable NEST to decrease by 1 .
d. OPERATORS cause the section of code labelled 5 to be executed.

5. Stack Manipulation for Operators

This section represents the heart of the translation algorithm. Since decisions are made based on the values of PRECEDENCE, these values are calculated for each operator (see 6 below). In addition, operators are PUSHed and POPped from the stack based on the precedence values calculated.

6. Calculation of Operator Precedence

Each operator of the input expression has an associated precedence calculated according to the formula:

> NOWP $=$ NEST * $10+$ PRECEDENCE(OPERATOR)

This value represents the relative precedence of the operator within the particular expression at hand. It is based on the absolute precedence, PRECEDENCE(OPERATOR), of the operator and the nesting level within the expression. The absolute values of precedence in our implementations are all less than 10. The factor NEST * 10 is therefore guaranteed to boost all the values for operators inside a given pair of parentheses to be higher than all those outside. Figure 11 shows a fairly complex expression, with each operator labelled with its nesting level, absolute precedence, and relative precedence.

7. PUSHing Operators onto the Stack

8. POPping Operators from the Stack

Each operator in the input expression must eventually be PUSHed onto the stack; none go directly to the output. When an operator is encountered in the input, its relative precedence is calculated and compared with that of the operator on top of the stack. As long as the TOS operator has higher precedence, it will be POPped to the output - this is expressed by the while loop at 8 . When control falls out of that loop, the current operator is then PUSHed onto the stack (i.e. the pair of values "operator, relative precedence" \mid and the main loop is repeated.

Figure 12 gives a history of the execution of the translation algorithm at work on the input expression:

$$
Z=(X+Y) *(X-Y)+(U+V)
$$

For lack of space, we have shown the stack with only the operator characters. The column headed LASTP always shows the relative precedence for the operator at the top of the stack. The arrows in the EXPRESSION column mark the progress of the scan. The column headed $<$? tells whether the current precedence is less than PRECEDENCE[TOS).

EXPRESSION OUTPUT NEST						
NOWP LASTP <?	STACK					
- $\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}\{\mathrm{X}-\mathrm{Y}\}+(\mathrm{U}+\mathrm{V})$	0	0	-1	-2	F	0
$\left.\mathrm{Z}=[\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y}]+\mathrm{U}+\mathrm{U}+\mathrm{V}\right)$	Z	0	-1	-2	F	0
$\mathrm{Z}_{4}=\{\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}\}$	Z	0	3	-2	F	=
$\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V})$	Z	1	3	3	F	=
$\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V})$	ZX	1	3	3	F	=
$\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V})$	ZX	1	14	3	F	$=+$
$\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V})$	ZXY	1	14	14	F	$=+$
$\begin{aligned} & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=\left(\mathrm{X}+\left.\mathrm{Y}\right\|_{\dagger} ^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V})\right. \end{aligned}$	ZXY	0	14	14	F	$=+$
	ZXY	0	5	14	T	$=+$
	ZXY +	0	5	3	F	$=$
	ZXY +	0	5	5	F	= *
$\begin{aligned} & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})^{\uparrow}+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \end{aligned}$	ZXY +	1	5	5	F	=*
	ZXY + X	1	5	5	F	=*
	ZXY + X	1	14	5	F	=*-
	ZXY + XY	1	14	14	F	=*
	ZXY + XY	0	14	14	F	= *
	ZXY + XY	0	4	14	T	=*-
	ZXY + XY -	0	4	5	T	=*
	ZXY + XY -*	0	4	3	F	=
	ZXY + XY - *	0	4	4	F	$=+$
$\begin{aligned} & \mathrm{Z}=\{\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}\} \\ & \mathrm{Z}=\{\mathrm{X}+\mathrm{Y})^{*}\|\mathrm{X}-\mathrm{Y}\|+\{\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}\|\mathrm{X}-\mathrm{Y}\|+(\mathrm{U}+\mathrm{V}) \end{aligned}$	ZXY + XY - *	1	4	4	F	$=+$
	ZXY + XY-*	1	4	4	F	$=+$
	ZXY + XY - *	1	14	4	F	$=++$
$\begin{aligned} & \left.\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*} \mid \mathrm{X}-\mathrm{Y}\right)+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{Y}) \end{aligned}$	ZXY + XY - * UV	1	14	14	F	= + +
$\begin{aligned} & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \\ & \mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{*}(\mathrm{X}-\mathrm{Y})+(\mathrm{U}+\mathrm{V}) \end{aligned}$	ZXY + XY - * $\mathrm{UV}^{\text {V }}$	0	14	14	F	$=++$
	ZXY + XY - *UV	0	-1	14	T	$=++$
	ZXY + XY - * UV +	0	-1	4	T	$=+$
	ZXY + XY - * $\mathrm{UV}+{ }^{+}$	0	-1	3	T	=
	$\mathrm{ZXY}+\mathrm{XY}-* \mathrm{UV}++=$			-2	F	0

Final Output $===>\quad \mathrm{ZXY}+\mathrm{XY}-* \mathrm{UV}++=$
Figure 12: Trace of Inflx to Postfix Translation

Listing 1
10 DIM STACK(9),TARGET(9):OUTPUTS 9)

11 DIM CURRENT(9)
15 INTRO $=9000:$ SETUP $=8000$
16 HOME $=-936$:CLREOL $=-868: K B D=-$ 16384 :CLR $=-16368$
17 GETKEY=3000:WAIT $=3100$: PERMUTE= 3200
18 FL'ASHINIT $=3300$: $\mathrm{PUSH}=3400$: $\mathrm{PULL}=$ 3500
19 CHRDOLLAR $=3600:$ SCAN $=2000$
20 DISPLAY $=3700:$ INIT $=3800$
21 POINTS $=3900$: AGAIN $=4000:$ RESTART $=$ 8050
50 STARTLINE=2:STACKLINE=4:MENULINE $=12$
51 OUTPUTLINE=6:TARGETLINE=9
52 ERRLINE=17:IEBUGLINE=17
1000 REM MAIN PROGRAM
1001 REM $============$
1010 GOSUB INTRO
1012 GOSUB SETUF
1015 GOSUB INIT
1018 GOSUB RESTART
1020 GOSUB SCAN
1025 GOSUB POINTS
1030 IF NOT DONE THEN 1015
1035 GOSUB AGAIN
1040 IF NOT ADDIO THEN 1012
1099 CALL HOME: END
2000 REM SCAN CURRENT STRING ONE
2001 REM CHARACTER AT A TIME AND
2002 REM REQUEST USER MOUES.
2003 REM $=======================$
2005 SCANPTR=1
2010 GOSUB DISPLAY
2015 UTAB MENLLINE: TAB 1: PRINT " CHOOSE ONE OF THE FOLLOWING:"

2020 TAB 5: PRINT LERA\$;FU\$;"] FUSH"

2025 UTAE ERRLINE: CALL CLREOL
2030 TAB 5: GOSUE GETKEY
2035 IF KEY\&FULLKEY THEN 2040
2037 GOSUH FULL: GOTO 2015
2040 IF KEY\#FUSHKEY THEN GOTO 2015
2045 GOSUH PUSH
2050 SCANPTR=SCANPTR+1
2055 IF SCANPTRくSSLEN THEN 2010
2060 IF STACKPTR $\because=0$ THEN 2099
2065 GOSUE PULL: GOTD 2060
2099 RETURN
3000 REM GETKEY ROUTINE
$3001 \mathrm{REM}==============$
3005 KEY = FEEK (KED)
3010 IF KEY〈128 THEN 3005
3015 IF KEY>=161 AND KEY<=222 THEN 3040
3020 POKE CLR O: GOTO 3005
3040 POKE CLR:O
3049 RETURN
3100 REM STANDARI WAIT ROUTINE
3101 REM $=====================$

```
3105 POKE CLR,O
3110 POKE 50,63: UTAB 24: TAE 5
3115 PRINT "PRESS ANY KEY TO CONTINUE
    ";
3120 FOKE 50,255
3125 IF PEEK (KBI)<128 THEN 3125
3130 POKE CLR:O
3135 UTAB 24: TAE 1: CALL CLREOL
3149 RETURN
3200 REM SET UP TARGET STRING
3201 REM ANII INITIALIZE THE
3202 REM CURRENT POSITION ARRAY,
3203 REM ==========================
3205 FOR I=1 TO SLEN:CURRENT(I)=
    I: NEXT I
3210 FOR I=1 T0 9:TARGET(I)=0: NEXT
    I
3215 FOR I=1 TO SLEN
3220 L= RND (SLEN)+1: IF TARGET(
    L >O THEN 3220
3225 TAFGET(L)=I
3230 NEXT I
3245 COUNT=0
3249 RETURN
3300 REM POKE IN THE FLASHIT
3301 REM SUBROUTINE
3302 REM
3305 POKE 1,201
3306 POKE 2,160
3307 POKE 3.176
3308 POKE 4,3
3309 PONE 5,76
3310 POKE 6,240
3311 POKE 7,253
3312 POKE 8,201
3313 POKE 9,192
3314 POKE 10,176
3315 POKE 11,6
3316 POKE 12,56
3317 POKE 13,233
3318 POKE 14,64
3319 FOKE 15,76
3320 FOKE 16,240
3321 POKE 17,253
3322 POKE 18,233
3323 POKE 19,128
3324 POKE 20,76
3325 POKE 21,240
3326 POKE 22,253
3330 FLASH=3350:REGULAR=3375
3349 RETURN
3350 FOKE 54,1: FOKE 55,0: RETURN
3375 POKE 54,189: POKE 55,158: RETURN
3400 REM PUSH CURRENT DIGIT ONTO
3401 REM STACK.
3402 REM =========================
3405 STACKPTR=STACKPTR+1
3410 UTAE STACKLINE: TAB 10+STACKPTR
3415 PRINT CURRENT(SCANPTR);
3420 STACK(STACKPTR)=CURRENT(SCANPTR)
3449 RETURN
3500 REM POP STACK TO DUTFUT ANI
3501 REM UPDATE DISPLAY. (Continued)
```

```
3502 REM ==========================
3503 IF STACKPTR>0 THEN 3509
3504 GOSUB FLASH: PRINT mm
3505 UTAB ERRLINE: TAB 5: PRINT
    "EMPTY STACK"
3506 GOSUB REGULAR: GOSUB WAIT
3507 RETURN
3509 TOS=STACK(STACKPTR)
3510 UTAB STACKLINE: TAB 10+STACKPTR
3511 PRINT " ";
3515 UTAB OUTPUTLINE: TAB 18+OUTPTR
3520 PRINT TOS;
3522 OUTFUT( OUTPTR )=TOS
3525 OUTPTR=0UTPTR+1
3530 STACKPTR=STACKPTR-1
3549 RETURN
3600 REM CONUERT NUM TO CHARACTER
3601 REM INTEGER BASIC CHR$ FUNCTION
3602 REM IN USER CONTRIBUTED SOFT-
3603 REM WARE.
3604 REM ==============================
3610 CHS=CHR+128*(CHF<<128)
3615 LC1= PEEK (224):LC2= PEEK (
    225)-(LC1>243): POKE 79+LC1-
    256*(LC2>127)+(LC2-255*(LC2)
    127))*256,CHS:CHR$="-": RETURN
3700 REM IISPLAY CURRENT SCAN
3701 REM POSITION IN INUERSE
3702 REM ======================
3705 GOSUB FLASH
3710 UTAB STARTLINE: TAB 18+SCANFTR
3715 PRINT CURRENT(SCANFTR)
3720 GOSUB REGULAR
3725 IF SCANPTR=1 THEN RETURN
3730 UTAB STARTLINE: TAB 18+SCANPTR-
        1
3732 PRINT CURRENT(SCANPTR-1)
3749 RETURN
3800 REM INIT IMPORTANT VARIABLES
3801 REM ============================
3805 STACKPTR=0
3810 OUTPTR=1
3811 DONE=0
3815 GOSUB FLASHINIT
3899 RETURN
3900 REM CHECK IF TARGET STRING
3901 REM HAS BEEN ACHIEVED. IF
3902 REM SO, THEN SET DONE=TRUE;
3903 REM OTHERWISE, BUMP COUNT
3904 FEM AND SET DONE=0
3910 FOR I=1 TO SLEN
3915 IF TARGET(I)#OUTPUT(I) THEN
    3950
3920 NEXT I
3925 REM TARGET AGREES WITH OUTPUT
3926 REM SO WE ARE "DONE".
3927 REM ===========================
3930 DONE=1
3935 COUNT=COUNT+1: RETURN
3950 DONE=0
3955 REM COPY OUTPUT TO CURRENT
3956 REM FOR RESCAN, BUMP COUNT.
3957 REM ==========================
3960 COUNT=COUNT+1
3965 FOR I=1 TO SLEN
3966 CURRENT( I )=OUTPUT(I)
3967 NEXT I
3999 RETURN
4000 REM SCORE PLAYER AND ALLOW
4001 REM DECISION AS TO RETRY.
\(4002 \mathrm{REM}====================\)
4005 UTAB DEBUGLINE: TAB 1
4010 GOSUB FLASH: PRINT "CONGRATULATI ONS!"
4011 GOSUB REGULAR: PRINT "YOU IID IT IN "; COUNT;" SCANS."
4012 PRINT "GO AGAIN? (Y/N)";: GOSUB GETKEY
4015 IF KEY 206 AND KEY 217 THEN 4005
4020 IF KEY \(=217\) THEN ALIDIO \(=0\)
4025 IF KEY=206 THEN ADIIO \(=1\)
4030 UTAB DEBUGLINE: TAB 1: PRINT : PRINT : PRINT
4049 RETURN
8000 REM SETUF ROUTINE
8001 REM \(=============\)
8005 CALL HOME
8006 CHR=219: GOSUB CHRDOLLAR:LBRA \(=\) CHR \(\$\)
8010 UTAE 5: PRINT "PLEASE INDICATE L ENGTH OF STARTING"
8011 PRINT "STRING===ン"; CALL CLREOL
8015 INPUT SLEN: IF SLEN \(>=1\) AND SLEN \(\leqslant=9\) THEN 8020
8018 PRINT "TRY AGAIN"
8019 GOTO 8010
8020 UTAE 7: FRINT "PLEASE HIT KEY YO U WISH TO"
8021 FRINT "USE FOR A PUSH": : GOSUB GETKEY: PUSHKEY=KEY
8022 CHR=PUSHKEY: COSUB CHRDOLLAR: PU\$ \(=\) CHR
8025 UTAB 9: TAB 1: PRINT "PLEASE HIT KEY YOU WISH TO"
8026 PRINT "USE FOR A POP"; : GOSUB GETKEY: PULLKEY=KEY
8027 CHR=PULLKEY: GOSUB CHRDOLLAR: PO\$=CHR
8030 GOSUB PERMUTE
8049 RETURN
8050 REM RESTART ROUTINE
8051 REM CALLED IF NEW SCAN IS
8052 REM NEEDED; I.E. TARGET
8053 REM NOT REACHED.
8054 CALL HOME
8055 UTAB STARTLINE: PRINT "STARTING POSITION:";
8057 FOR I=1 TO SLEN: PRINT CURRENT I) F : NEXT I
8060 UTAB STACKLINE: TAB 1: PRINT "STACK \(===>"\)
8065 UTAB OUTPUTLINE: TAB 1: PRINT "OUTPUT POSITION:"
8070 UTAB TARGETLINE: TAE 1: PRINT "TARGET STRING:";
8071 FOR \(I=1\) TO SLEN: PRINT TARGET( I): : NEXT I
8075 UTAB 23: TAB 1:CHR=PUSHKEY: GOSUB CHRDOLLAR
8076 PRINT "KEY FOR FUSH= "" \(\mathrm{CHR} \$\) ;"""; PRINT \("\) KEY FOR POF= "";
```

(Continued

```
8077 CHR=PULLKEY: GOSUB CHRDOLLAR:
    PRINT CHR$;
8078 FRINT ":";
8099 RETURN
9000 REM INTRODUCTION AND RULES
9001 REM OF PLAY.
9002 REM =========================
9010 CALL HOME
9015 FRINT " WELCOME TO THE GAME OF
    STACK!"
9016 FRINT : PRINT "THE OB.JECT IS TO
    REARRANGE A STRING"
9017 FRINT "OF DIGITS; SUCH AS 123456
    , INTO A "
9018 FRINT "DIFFERENT ORUER, SUCH AS
    615342."
9019 PRINT "THE ORIGINAL STRING IS SC
    ANNED FROM LEFT";
9020 FRINT "TO RIGHT. AT EACH DIGIT
    YOU HAUE THE"
9021 FRINT "FOLLOWING OPTIONS:"
9022 PRINT : TAB 5: PRINT "PUSH ===>
        PUTS THE CURRENT DIGIT ON"
9023 TAE 15: PRINT "THE STACK, AND CA
        USES THE"
9024 TAE 15: PRINT "SCAN TO GO TO THE
        NEXT"
9025 TAB 15: PRINT "DIGIT.": PRINT
9026 TAB 5: PRINT "POP ===` TRANSFER
    S THE TOP OF THE"
9027 TAB 15: PRINT "STACK TO THE OUTP
    UT ANL"
9028 TAB 15: PRINT "ALLOWS ANOTHER AC
        TION -"
9029 TAB 15: PRINT "I.E. PUSH OR POP
    - BEFORE"
9030 TAB 15: PRINT "ADUANCING THE SCA
    N."
9035 GOSUB WAIT
9040 CALL HOME
9045 VTAE 5: TAB 1: FRINT " THE NUMB
    ER OF DIGITS TO EE"
9050 PRINT "REARRANGED IS CHOSEN BY T
    HE PLAYER;"
9051 PRINT "AS WELL AS THE KEYS TO BE
        USED TO "
9052 PRINT "INDICATE A PUSH OR A POP.
    "
9053 FRINT : PRINT n THE ORIGINAL ST
    RING WILL BE SCANNEI"
9054 PRINT "REPEATEDLY UNTIL THE TARG
    ET STRING IS"
9055 PRINT "ACHIEUEI, THE SCORING IS
        BASEII ON THE"
905Ó FRINT "NUMBER OF SCANS REQUIRED
    FOR THE"
9057 FRINT "FLAYEF TO REACH THE TARGE
    T FOSITION."
9998 GOSUE WAIT
9999 FETURN
                    NCRO
```


GET MORE GET MORE GET MORE OUT OF YOUR APPLE WITH MICRO ing APPLE

MICRO/Apple

Over 30 Apple Programs on Diskette For Less Than $\$ 1.00$ Apiece! No Need to Type in Hundreds of Lines of Code!
224 page book and diskette $\$ 24.95^{*}$

* Add $\$ 2.00$ for surface shipping. Massachusetts residents add 5\% for sales tax.

MICRO's new book for Apple Il users lets you

- Speed up programming in Applesoft and Integer BASIC!
- Add Apple II Plus editing features - at no cost!
- Round and format numbers accurately in business applications!
- Get lowercase letters and punctuation into Applesoft strings - at no cost!
- Do a shape table easily and correctly!
- Play the hit game "Spelunker"!
- And much, much more!

WIth MICROIApple 1, the first volume in our new series, you receive:

- 30 choice articles from MICRO (1977-80), complete with listings, all updated by the authors or MICRO staff, plus
- 38 tested programs on diskette (23 sec tor, 3.2 DOS format, convertible to 3.3).

Ask for MICRO/Apple at your computer store or Call Toll Free 800-227-1617 Extension 564
In California, call 800-772-3545, Extension 564 VISA and Mastercard Accepted

MICRO 34 Chelmsford Street
P.O. Box 6502 Chelmsford, MA 01824

Apple Fun

We've taken five of our most popular programs and combined them into one tremendous package full of fun and excitement. This disk-based package now offers you these great games:
Mimic-How good is your memory? Here's a chance to find out! Your Apple will display a sequence of figures on a 3×3 grid. You must respond with the exact same sequence, within the time limit.

There are five different, increasingly difficult versions of the game, including one that will keep going indefinitely. Mimic is exciting, fast paced and challenging-fun for all!
Air Fight Simulation-Your mission: Take off and land your aircraft without crashing. You're flying blind -on instruments only.
A full tank of fuel gives you a maximum range of about 50 miles. The computer will constantly display updates of your air speed, compass heading and altitude. Your most important instrument is the Angle of Ascent/Bank Indicator. It tells if the plane is climbing or descending, whether banking into a right or left turn.

After you've acquired a few hours of flying time, you can try flying a course against a map or doing aerobatic maneuvers. Get a little more flight time under your belt, the sky's the limit.
Colormaster-Test your powers of deduction as you try to guess the secret color code in this Mastermindtype game. There are two levels of difficulty, and three options of play to vary your games. Not only can you guess the computer's color code, but it will guess yours! It can also serve as referee in a game between two human opponents. Can you make and break the color code. . .?
Star Ship Attack-Your mission is to protect our orbiting food station satellites from destruction by an enemy star ship. You must capture, destroy or drive off the attacking ship. If you fail, our planet is doomed.
Trilogy-This contest has its origins in the simple game of tic-tac-toe. The object of the game is to place three of your colors, in a row, into the delta-like, mul-ti-level display. The rows may be horizontal, vertical, diagonal and wrapped around, through the "third dimension". Your Apple will be trying to do the same. You can even have your Apple play against itself!

Minimum system requirements are an Apple Il or Apple II Plus computer with 32 K of memory and one minidisk drive. Mimic requires Applesoft in ROM, all others run in RAM or ROM Applesoft.
Order No. 0161AD \$19.95

Paddle Fun

This new Apple disk package requires a steady eye and a quick hand at the game paddles! It includes: Inveders-You must destroy an invading fleet of 55 flying saucers while dodging the carpet of bombs they drop. Your bomb shelters will help you-for a while. Our version of a well known arcade game! Requires Applesoft in ROM.
Howitzer-This is a one or two person game in which you must fire upon another howitzer position. This program is written in HIGH-RESOLUTION graphics using different terrain and wind conditions each round to make this a demanding game. The difficulty level can be altered to suit the ability of the players. Requires Applesoft in ROM.
Space Wars-This program has three parts: (1) Two flying saucers meet in laser combat-for two players, (2) two saucers compete to see which can shoot out the most stars-for two players, and (3) one saucer shoots the stars in order to get a higher rank-for one player only. Requires Applesoft.
Golf-Whether you win or lose, you're bound to have fun on our 18 hole Apple golf course. Choose your club and your direction and hope to avoid the sandtraps. Losing too many strokes in the water hazards? You can always increase your handicap. Get off the tee and onto the green with Apple Golf. Requires Applesoft.
The minimum system requirement for this package is an Apple II or Apple II Plus computer with 32 K of memory and one minidisk drive.
Order No. 0163AD \$19.95 money. who wants to tap the limitess energy of our sun. Includes AppleDOS 3.2.
Order No. 0235AD (disk-based version) $\mathbf{\$ 3 4 . 9 5}$ students can improve their math skills while playing these games: cheat the hangman. chance to fire at you. depleted and the computer's robot can shoot at yours. move your sub and fire at the enemy fleet.

Order No. 0160AD \$19.95

Solar Energy For The Home

With the price of fossil fuels rising astronomically, solar space-heating systems are starting to become very attractive. But is solar heat cost-effective for you? This program can answer that question.
Just input this data for your home: location, size, interior details and amount of window space. It will then calculate your current heat loss and the amount of gain from any south facing windows. Then, enter the data for the contemplated solar heating installation. The program will compute the NET heating gain, the cost of conventional fuels vs. solar heat, and the calculated payback period-showing if the investment will save you

Solar Energy for the Home: It's a natural for architects, designers, contractors, homeowners. . . anyone
Minimum system requirements are an Apple II or Apple II Plus with one disk drive and 28 K of RAM.

Math Fun

The Math Fun package uses the techniques of immediate feedback and positive reinforcement so that
Hanging-A little man is walking up the steps to the hangman's noose. But YOU can save him by answering the decimal math problems posed by the computer. Correct answers will move the man down the steps and

Spellbinder-You are a magician batting a computerized wizard. In order to cast death clouds, fireballs and other magic spells on him, you must correctly answer problems involving fractions.
Whole Space-Pilot your space craft to attack the enemy planet. Each time you give a correct answer to the whole number problems, you can move your ship or fire. But for every wrong answer, the enemy gets a

Car Jump-Make your stunt car jump the ramps. Each correct answer will increase the number of buses your car must jump over. These problems involve calculating the areas of different geometric figures.
Robot Duel-Fire your laser at the computer's robot. If you give the correct answer to problems on calculating volumes, your robot can shoot at his opponent. If you give the wrong answer, your shield power will be

Sub Attack-Practice using percentages as you maneuver your sub into the harbor. A correct answer lets you
All of these programs run in Applesoft BASIC, except Whole Space, which requires Integer BASIC.

Apple* Software From Instant Software

Santa Paravia and Fiumaccio

Buon giorno, signore!

Welcome to the province of Santa Paravia. As your steward, I hope you will enjoy your reign here. I feel sure that you will find it, shall we say, profitable.

Perhaps I should acquaint you with our little domain. It is not a wealthy area, signore, but riches and glory are possible for one who is aware of political realities. These realities include your serfs. They constantly request more food from your grain reserves, grain that could be sold instead for gold florins. And should your justice become a trifle harsh; they will flee to other lands.
Yet another concern is the weather. If it is good, so is the harvest. But the rats may eat much of our surplus and we have had years of drought when famine threatened our population.
Certainly, the administration of a growing city-state will require tax revenues. And where better to gather such funds than the local marketplaces and mills? You may find it necessary to increase custom duties or tax the incomes of the merchants and nobles. Whatever you do, there will be farreaching consequences. . . and, perhaps, an elevation of your noble title.
Your standing will surely be enhanced by building a new palace or a magnificent cattedrale. You will do well to increase your landholdings, if you also equip a few units of soldiers. There is, alas, no small need for soldiery here, for the unscrupulous Baron Peppone may invade you at any time.
To measure your progress, the official cartographer will draw you a mappa. From

it, you can see how much land you hold. how much of it is under the plow and how adequate your defenses are. We are unique in that here, the map IS the territory. I trust that I have been of help, signore. I look forward to the day when I may address you as His Royal Highness, King of Santa Paravia. Buona fortuna or, as you say, "Good luck". For the Apple 48K.
Order No. 0174A 59.95 (cassette version).
Order No. 0229AD $\$ 19.95$ (disk version).
TO SEE YOUR LOCAL INSTANT SOFTWARE DEALER OR USE THE ORDER FORM BELOW

| For Fast
 Service
 call
 aoll
 Toll-Free
 $1-800-258-5473 ~$ |
| :--- | :--- |

Apple Cassettes

0018A		57.95
0025A	Mimic	\$7.95
0040A	Bowling/Trilogy	\$7.95
0073A	Math Tutor 1.	57.9
0079A	Oil Tycoon.	\$9.95
0080A	Sahara Warriors.	\$7.95
0088A	Accounting Assistant.	\$7.95
0094A	Mortgage w/Prepayment Option/	
	Financier..	\$7.95
0096A	Space Wars.	\$7.95
0098A	Math Tutor II.	\$7.95
0174A	Santa Paravia and Fiurn	S9.9
0148A	Air Flight Simulation	$\mathbf{5 9 . 9}$

We Guarantee It!

machine when a used one can be just as good?
The Used Computer Exchange offers a unique, nationwide listing service which puts buyers and sellers of used micro listing service which puts buyers and sellers of used micro
systems and peripherals together quickly, and you pay only for results. We also provide advice about pricing, what to include in an offer, how to handle shipping, and how to protect yourself.

In addition, we offer the Used Micro-Trends Report for
$\$ 6.75$ with complete data on key manufacturers, models, price histories, maintenance costs, lowest discount houses, and much more. TO BUY OR SELL, LIST WITH US.

USED unity Extinalict THE NATIONWIDE LISTING SERVICE FOR THE NATIONWIDE LISTING SERICE
USED WICROCOMPUTER EOUIPMENT

Apples don't rot!

Neither do other microcomputer ystems. So why pay for a new

> CALL US TOLL-FREE
> $800-327-9191$
> (EXTENSION 61)
> DC AREA 703-471-0044
\qquad

END FRUSTRA TION!!

FROM CASSETTE FAILURES

 PERRY PERIPHERALS HAS THE HDE SOLUTION OMNIDISK SYSTEMS ($5^{\prime \prime}$ and $8^{\prime \prime}$)ACCLAIMED HDE SOFTWARE

- Assembler, Dynamic Debugging Tool. Text Output Processor, Comprehensive Memory Test
- HDE DISK BASIC NOW AVAILABLE PERRY PERIPHERALS S-100 PACKAGE

Adds Omnidisk (5") to Your KIM/S-100 System

- Construction Manual-No Parts
- FODS \& TED Diskette
- \$20. +\$2. postage \& handling. (NY residents add 7\% tax) (specify for $\mathbf{1}$ or $\mathbf{2}$ drive svstem)

Place your order with: PERRY PERIPHERALS
P.O. Box 924

Miller Place, N.Y. 11764
(516) 744-6462

Your Full-Line HDE Distributor/Exporter

INTER-STAT ${ }^{\text {T }}$ offers you a full range of interactive statistical analysis techniques, from averages and medians to binomial and poisson distributions, correlation coefficients and one- and two-way analysis of variance. $\$ 169$.

ADVANCED MATH ROUTINES is the mathematical tool kit for common. yet complex numerical problems. Routines include: linear regression, matrix operations, numerical calculus. differential equations and data set recall for iterative calculations. $\$ 169$.

Thoroughly tested, well documented and easy to master, each package includes a $30+$ page self-teaching manual.
Serendipity's complete line of software solutions for business. education and professional applications are available at your local Computerland or Apple dealer.
For a free brochure, or to order direct contact Serendipity Systems, 225 Elmira Road, Ithaca, NY 14850.
Phone 607-277-4889. Visa and MC accepted.
${ }^{\text {raApple Computer }}$
SERENDIPTY SISTEMS

The TINY Pascal System turns your APPLE II micro into a 16 -bit P-machine. You too can learn the language that is slated to become the successor to BASIC. TINY Pascal offers the following:

- LINE EDITOR to create, modify and maintain source
* COMPILER to produce P-eode, the assembly langauage of the P-machine
- INTERPRETER to oxecute the compiled P-code (has TRACE) Structured programmed constructa: CASE-OF-ELSE, WHILE-DO, IF-THEN. ELSE, REP EAT-UNTIL, FOR-TOIDOWNTO-DO, BEGIN.END, MEM, CONST, VAR ARRAY

Our now TINY Pascal PLUS + provides graphics and other bultin functions: GRAPHICS, PLOT, POINT, TEXT, INKEY, ABS AND SQR. The PET version supports double density plotting on 40 column screen giving 80×50 plot positions. The APPLE II version supports LORES and for ROM APPLESOFT owners the HIRES graphics plus other features with: COLOR, HGRAPHICS, HCOLOR, HPLOT, PDL and TONE. For those who do not require graphics capabilities, you may still order our original TIny Pascal package.

T!NY Pascal PLUS + GRAPHICS VERSION-
PET 32K NEW Roms cassette
PET 32K NEW Roms diskette.
APPLE II 32KJ48K w/DOS 3.2 or 3.3............
TINY Pascal NON-GRAPHICS VERSIONS-
PET 16K/32K NEW Roms cassette.
PET 16K/32K NEW Roms diskette.
APPLE II w/ROM Applesoft 32 K w/DOS
APPLE II w/RAM Applesoft 48K w/DOS. .
USER's Manual (refundable with software order). 6502 Assembly Listing of INTEAPRETER-graphics $\$ 25$ 6502:Assembly Listing of INTERPRETER-non graphics. . $\$ 20$

ABACUS SOFTWARE
P.O. Box 7211

Grand Rapids, Michigan 49510
(616) 241-5510

Electronic Typing Program for the Apple

Abstract

A minimal word processor in BASIC for the Apple II that edits one-line-at-a-time.

Thomas D. Brock
1227 Dartmouth Rd. Madison, Wisconsin 53705

Although the Apple II was not really designed with word processing in mind, it is adaptable to a number of available word processing software packages. Some of these packages are not as sophisticated as office-oriented word processors, but several work very well.

However, all word processing packages for the Apple are fairly involved programs, and require not only a disk system but a large amount of memory. They do sophisticated file handling, formatting, line justification, and various editing functions. These features are fine for office-oriented or article-writing tasks, but if you're only interested in writing a letter, you don't need disk back-up copies or fancy formatting. You'd probably like to just sit down at your Apple, type the letter, then have it printed and ready to tear off and mail.

It was with this idea in mind that I wrote the Apple electronic typing program. This program lets you enter text a line-at-a-time, edit the line on the screen, and then print it when a carriage return is pressed. As the line is printed, the screen is cleared and another line can be typed in at the same time that the previous line is being printed. Thus, you don't have to wait for a print function. When the typing is finished, the letter is already printed and ready to be sent. Simple screenoriented editing is permitted, but once you press the carriage return, the line starts going to the printer and can no longer be changed.

Although this problem originally motivated me to write this program, once I got into the programming details I discovered I was learning a lot about how some of the more sophisticated word processing packages operated. I decided to implement both forward and backward spacing for editing, word wrap |this is a feature that avoids breaking a word in the middle when typing reaches the end of the standard 40-character Apple screen; the whole word is moved down to the following line, making reading and proofing of text much easier), upper and lower case, tabbing, and single and double spacing. Although each of these features adds to the overhead of the program and slows it down, I thought they were useful and left them in. Most of the features can be easily deleted if they don't suit your needs.

This program was written in Integer BASIC because Applesoft was simply too slow to handle it. The procedure is to do all of the character display on the screen, by direct POKEs into screen memory. PRINT statements are used only to send text out to the printer. The character called by the keyboard is determined by PEEKing the keyboard memory location (-16384), which is the way in which the Applesoft GET function is handled in Integer BASIC. At the same time that the keyboard character is POKEd to the screen, it is POKEd to one of two alternating print buffers in memory. If a line is to be printed (as signalled by a carriage return), a flag is set, and the line is printed character-by-character until an end-of-line indicator is reached. The keyboard can interrupt the print routine at any time to direct a character to the next line forming on the screen, but another carriage return will not be recognized until the previous line is completely printed. A fast typist might be able to get ahead of the printer, but if you are composing a letter at the keyboard, as the program intends, then you are usually typing slowly enough
so that keyboard interrupts do not interfere with the print function. (Under no conditions will a fast typist wipe out part or all of an unprinted line. If keyboard interrupts come too frequently during a print cycle, all that will result is that you will have to type more slowly and/or wait at the end of the second line until the first line is printed.)

The reason two print buffers are used alternately is because the print function looks for an end-of-line flag, which is always inserted in the location next to that one just specified by the keyboard. If only a single print buffer were used and you type too rapidly, the second line could overprint part of the first line and a new end-of-line flag inserted, thus prematurely terminating printing.

Margins are set in a simple and direct way. When the program is first run, with the print head at the full left side of the printer, the operator is asked to move the paper into the position desired for the left margin. Then, using the Apple keyboard, the user spaces across the page, watching the print head move across the printer until the desired right margin is reached, at which point a carriage return is sent, and the margins are set. The screen now goes blank and a cursor is positioned at the left end of one of the middle rows of the Apple screen. To signify the right margin on the screen, a vertical bar is inserted, usually down and to the right on the following line (unless very narrow margins of less than 40 characters are being used).

If word wrap moves a word to the second line, the vertical bar moves over, so that the vertical bar always indicates the true right margin, as it will appear on the printer. When the typist reaches a point seven spaces from the right margin, a bell will ring. It is possible to overtype the right margin that has been set, although this would not
be desirable for any more than a few extra characters.

All of the characters typed at the keyboard will be displayed in normal video and will be printed in lower case on the printer. To obtain a single upper case character, it is preceded with an ESCAPE; it will then be displayed in inverse video, and subsequently printed upper case. To obtain a series of upper case characters, precede them with a "control-A." All subsequent characters will then be displayed in inverse video and printed as upper case until a "control-S" is typed.

While the system is printing, you'll notice that a line of mostly garbage unfolds at the top of the screen, except for the upper case characters, which will appear normally. The garbage arises because the Apple interprets ASCII characters in a different manner than the printer. As outlined in table 7, page 15, of the Apple Reference Manual, the character that will appear on the Apple screen can be either an upper case letter, a number, or a special character (such as a period, comma, or colon).

If the ASCII code used is less than 64, then the character will appear on the screen in inverse video. If the ASCII code used is between 64 and 127, then the character will appear on the screen as a flashing character. ASCII codes between 128 and 159 are control characters, but appear on the screen as normal video (if they are POKEd to the screen, but not if placed on the screen with a PRINT statement]. ASCII codes from 160 to 223 will appear as normal video, whereas ASCII codes of 224 to 255 will appear on the screen as numbers or special characters.

As if it isn't bad enough having three separate screen codes for the same character, depending upon whether it is inverse, flashing, or normal, we must also remember that the ASCII code generated by the keyboard, |which we read at memory location -16384) is different from the ASCII code that the printer recognizes. From the keyboard, the high bit is set, so that the ASCII codes run from 128 to 255 , whereas the printer recognizes the ASCII code without the high bit, so it requires codes from 1 to 127 . Fortunately, all we need to do to convert the keyboard code to the printer code is to subtract 128.

Another problem arises at this point. If we are to know where we are on the screen, we need a cursor. Since we are doing everything with screen POKEs, a cursor is not automatically

[^2]```
4010 IF }X<=127 AND X>=96 THEN X=X+6
4020 IF X>=64 AND X<=95 THEN X=X+128-(3*FL)
4025 POKE S1,X
4030 IF FL=0 AND T<=95 THEN LC=32
4032 IF T< =95 THEN Xl=T+LC
4034 IF T<=127 AND T>=96 THEN Xl=T-64
4035 POKE F,XI
4037 LC=0
4 0 4 0 ~ J = J + 1 ~
4045 P=P+1
4047 B=B+1
4048 FL=0
4050 [F J=J l+1 THEN J=128
4060 [F J>TERM THEM J=TERM
4070 Sl=S+J
4080 X= PEEK (S1)
4090 IF X>=192 THEN X=X-128
4100 IF X<192 AND X>=160 THEN }x=x-6
4105 IF X<=63 THEN FL=64
4110 POKE Sl,X+FL
4120 GOTO 100
5000 POKE -16368,0
5005 FOR I=1 TO 5
S005 PORE S1,160
5020-POKE P, 32
5030 J=J+1
5040 IF J=40 THEN J=128
5050 P=P+1
5055 B=B+1
5060 Sl=5+J
5070 NEXT I
5075 POKE S1,95
5080 POKE P+1,255
5090 GOTO 100
5500 POKE -16368,0
5505 FOR I=1 TO 30
5510 PORE S1,160
5520 POKE P,32
5530 J=J +1
5540 IF J=40 THEN J=128
5550 P=P+1
555 B=B+1
5550 S2=5+J
5570 NEXT I
557.5 POKE S1,96
5580 POKE P+1,255
5590 GOTO 100
6000 TEMP=TERM
6002 Jl=J
6005 X= PEEK (S1)
6010 IF X=160 OR X=96 THEN GOTO 6100
 6020 R=R+1
 6030 Sl=S l-1
 6040 GOTO 6000
 6100 J=128
 6110 I=0
 6112 IF I=R THEN GOTO 6162
 6113 I= 1+1
 6115 Sl=S1+1
 6120 X= PEEK (S1)
 6130 POKE S1,160
 6140 POKE S+J,X
 6 1 5 0 \mathrm { J } = \mathrm { J } + 1
 6l60 GOTO 6112
 6160 GOTO 6112
 5165 TEMP=TEMP+R
 6170 POKE TEMP,219
 5l75 Jl=J1-R-1
 6180 R=0
 6190 Sl=S+J
 6200 RETURN
 7000 PR#O
 7010 POKE 34,0
 7020 CALL -936
 7030 VTAB }1
 7040 PRINT "YOU WILL HAVE TO RECONNECT
 DOS BY TYPING 'PR %'m
 7050 END
 8000 CALL -936: VIAB 10
 8001 INPUT "WHAT SLOT FOR PRINTER",PN
 8003 MARGIN=60
 8005 INPUT "DO YOU WANT TO SET MARGINS(Y/N)",YS
 8005 INPUT "DO YOU WANT TO SET
 8010 IF Y$#"Y" THEN TERM=14
 8017 PR&PN: PRINT CHRS(13,13);: PR#0
 8018 VTAB 10
 8020 PRINT "ADJUSET PRINT HEAD AND PAPER
 8030 PRINT "THEN SPACE ACROSS TO RIGHT MARGIN"
 8030 PRINT "THEN SPACE ACROSS TO RIC
 B041 PRINT WHEN YOU HAVE PROPER RIGHT
MARGIN, PRESS RETURN"
```

(Continued)
generated and we must provide one. The procedure here is to read the character next to the one we have just inserted on the screen and convert it to flashing. This is done by PEEKing at the location just after the one we have POKEd, adjusting its value appropriately to make it flash, and POKEing it back where we found it. Once we are able to adjust our ASCII codes properly, most of the rest of the programming is relatively straightforward, although some complications arise from the word wrap, backspace, and forward space arrows. |The details of the program will be given later.)

When it is all finished, the program seems surprisingly complicated for what it does. Is it worth it? I have found the program quite useful for typing routine letters that I did not need to save to disk, or did not anticipate editing. Since the format to be printed is seen on the printer before it is used, it is simple to adjust margins for narfow printing jobs, such as envelopes, labels, and file cards. Perhaps the most useful thing about the program is that it forces you to understand how the Apple keyboard and screen function. It also illustrates the principle of how you can have the computer do two different tasks (typing and printing) at the same time.

The next step in making this program more useful is to convert it to machine language so that it will run faster and thus not slow down a fast typist. This is left as an exercise for the reader!

## Program

## Variables Used

$S=$ screen start position; memory location 1320 (mid-screen).
S1 $=$ screen cursor position; initialized to S .
$\mathrm{J}=$ counter for screen column position.
$\mathrm{jl}=$ end-of-screen column position $=39$.
$\mathrm{P}=$ print buffer initial position $=$ hex 300 or decimal 768 (alternate print buffer position is hex 364 or decimal 868).
$\mathrm{T} 1=$ temporary print buffer location (for alternating print buffer routine).
UC = upper case flag; initialized to zero and set to 32 when "Escape" pressed.
$A C=$ all caps flag; initialized to zero and set to 32 when all caps called by "control-A"; reset to zero when "all caps" terminated by "control-S".

## 8045 PR\#PN

8047 MARG IN $=0$
$8050 \mathrm{X}=\mathrm{PEEK}(-16384)$
8055 IF X=141 THEN GOTO 8400
8060 IF X=160 THEN GOTO 8200
8070 IF X=136 THEN GOTO 8300
8080 GOTO 8050
8200 PORE $-16368,0: A \$=C H R \$(32,32)$
8210 MARGIN=MARGIN-1
8220 PRINT A\$:
8230 GOTO 8050
8300 POKE $-16368,0: A \$=\operatorname{CHR}(8,8)$
8310 MARGIN=MARGIN-1
8320 PRINT A\$:
8330 GOTO 8050
8400 POKE -16368,0
8405 IF MARGIN<40 THEN GOTO 8440
8407 TERM=1448+(MARGIN-40)
8410 PRINT CHRS $(13,13)$;
8420 PR $\ddagger 0$
8430 RETURN
8440 TERM $=1320+$ MARGIN
8450 PRINT CHR $(13,13)$; : PR\#0: RETURN

F1 = flag for use in alternating print buffer routine; set alternately to 0 or 1 at each pass through the print routine.
$\mathrm{K} 1=$ flag working opposite F 1 ; set to 0 when Fl set to 1 and vice-versa.
$B=$ bell counter for margin.
$\mathrm{FL}=$ flag to indicate character picked from screen by forward or backspace is upper case (inverse video); set to either 0 or 64.
LC = lower case flag for forward space routine, for making character lower case for the printer.
$\mathrm{F}=$ print flag; if set to 1 then a line is being printed; reset to zero when printing of line is finished lend-of-line flag is reached).
$\mathrm{T}=$ temporary variable for switch routines.
$\mathrm{DS}=$ double/single space flag; set to 1 for single-space and 2 for double-space.
P1 = print buffer current position; location in print buffer where next character will be POKEd.
$\mathrm{R}=$ counter for word-wrap.
TERM $=$ terminus of printer line as marked on screen; set to printer line length of 60 characters by default; set to selected right margin by subroutine 8000.

MARGIN = length of line counter; set by subroutine 8000 .
$\mathrm{I}=$ general index counter for tab and word-wrap functions.

## Keyboard and Screen Codes Used

$96=$ flashing space on screen; cursor for next character to be placed on screen.
$129=$ control $-A$; indicates to start all caps; sets $A C$ to 32 until a control - $S$ is typed.
$136=$ control $-H$; backspace arrow. $137=$ control -1 ; tab 5 spaces.
$138=$ control -J ; tab 30 spaces.
141 = control $-M$; carriage return.
$147=$ control $-S$; end all caps; set $A C$ to 0.
$149=$ control -U ; forward space arrow. $154=$ control -Z ; quit program.
$155=$ Escape; next character is upper case; sets UC to 32 for the next character only.
$219=$ ASCII screen code for vertical bar.
$255=$ Hex $F$; end-of-line flag for print buffer.

## Routines and Subroutines

Line 10: CHR\$ function in Integer BASIC.
Lines 11-80: initialization of variables. Lines 100-300: read keyboard and print line routines; if a line is being printed, the keyboard may interrupt.
Line 110: read keyboard character.
Lines 120-200: check for keyboard control character.
Line 210: check to see if keyboard has been pressed.
Line 220: check to see if print flag (F) has been set, if not loop and read keyboard again.
Lines 230-330: print routine; Line 240 checks for end-of-line flag (Hex FF or decimal 255).
Line 1000: clear keyboard strobe.
Lines 1000-1170: screen and print buffer business; adjust character for upper or lower case, POKE to screen and print buffer, advance counters, check for margin and ring bell, loop to read keyboard for next character.

Lines 2000-2070: printer business; sets print flag $|\mathrm{F}\rangle$ to 1 , changes print buffer, clears screen, resets cursor, resets end-of-line signal.
Lines 3000-3120: Backspace functior (back arrow on keyboard); reads screer position at cursor and changes from flashing to normal or inverse, backs up reads screen position backed up to checks to see if character is invers video ( $=$ cap) and sets FL to indicate changes character picked up from nor mal or inverse to flashing, returns tı keyboard.
Lines 4000-4120: Forward space func tion (forward arrow on keyboard); read screen character, saves it for print bud fer in $T$, changes from flashing to nos mal or inverse, converts to prope ASCII and POKEs into print buffel moves forward (will not forward spac past end-of-line set by Margin), set next character to flashing and sets it verse video flag (FL).
Lines 5000-5590: Tab 5 function; FOR-NEXT loop; puts normal space (ASCII 160) on screen and norm: spaces (ASCII 32) in print buffer for th next 5 spaces.
Lines 5500-5590: Tab 30 spaces.
Lines 6000-6190: Word-wrap function If end-of-line reached ( $J=39$ ) on screes then GOSUB 6000. Checks for wheth character at cursor position is a spac (ASCII 160 or 96 ). If not, backs up unt it finds a space, counting the number positions backed up with R. When finds a space it sets the screen positic for output to the next line (with $\mathrm{S}+$ ] then moves forward on the previol line (with S1), picks up each charact and transfers it to the next line. Clea the end-of-line signal (vertical ba from its initial location and moves right the number of spaces printed ( the 2nd line. Resets S1 to the next fr screen location and returns.
Lines 7000-7050: program terminatis routine; clears screen, reminds us that DOS must be reinitialized fro the keyboard, and quits.
Lines 8000-8450: Sets printer slot a margin.

## Special Functions

$\mathrm{X}=\mathrm{PEEK}(-16384)$ reads the keyboas as the code of the key pressed is stor in memory location - 16384 .

POKE - 16368,0 clears the keybor strobe. This must be done each tir after the keyboard is read.
IF $\times>127$ : If a key is pressed, $t$ value at the keyboard memory locati will be greater than 127 (high bit is st MCR

# A Typewriter Bell for Your Microcomputer 


#### Abstract

This hardware and software combination sounds an alarm when you near the end of a BASIC Input line. The hardware can also be used to improve game programs.


Charles L. Stanford<br>2903 Georgetown Road<br>Cinnaminson, New Jersey 08077

A wordprocessor, or even a simple screen editor, can be a great aid in writing articles and formatting text or graphics printouts. But the lack of any audible indication of line end can cause many delays while letters or words are moved down to the next line, or hyphenated. Even programming in BASIC can be substantially improved by a "bell." For example, I like to cram as much as possible into each DATA statement line. So it's a real pain when I run over the 72 character limit of the buffer, and have to redo the whole line.

Luckily, Microsoft made it easy to program a line position detector, by putting vectors and flags in the first three pages of RAM on most of their programs. Memory maps of PET, Apple, Atari, OSI, and several others indicate the presence of a "line buffer pointer." Its location varies, but it is usually pretty low in page zero. On the OSI, location $\$ 000 \mathrm{E}$ holds the pointer to the next open character space in the line buffer, which happens to start at $\$ 0013$. Thus, a tool is available to check your current location while entering data, or printing to the screen. But how do we access this information and put it to use?

BASIC uses a routine located in the monitor ROM at \$FFBA to input a character, whether from program memory, the keyboard, or the ACIA. While most such routines and subroutines are either not accessible, or must be reached by the USR function, this particular one (along with a few
others) is reached by BASIC via an indirect jump through RAM at $\$ 0218$. So, it's no real trick to "intercept" the routine and use it for our bell. The BASIC routine shown in listing 1 does just that.

Listing 1 shows a program which will POKE a machine language program into free RAM at the top of page zero. Please note that while this RAM is not used by BASIC, it is used by the monitor, so a break and warm start will require that the vectors in line 40 be reset, and a break to the monitor will require that the entire program be reentered. Otherwise, once the program has been run, NEW can be typed and the computer is available for normal use.

Listing 2 shows the actual machine language program. By changing the vectors as we do in line 40 of listing 1, the BASIC routine jumps to \$00D8 instead of to \$FFBA. That, of course, has to be done at some point, but we can use the time for our own purposes. First, the value of the data at location $\$ 000 \mathrm{E}$ is loaded into the accumulator, and compared with the desired location for the bell to ring. This can be changed as you desire; it is set as shown to ring at the 64th of the 72 characters. Next land this is optional) a solid square is POKEd to the screen at the exact location of the 73rd character, to give a good visual indication of the end of the line. I have found this to be particularly useful for BASIC programming, so that the line can use every character possible.

Finally, we ring the bell. This is done by setting two of the keyboard rows located in memory location \$DF00
to low. (Actually, while only two rows need to go low, I just set all eight to zero. This triggers a small oscillator which will be described shortly.| The lines stay low for only a few microseconds, until the keyboard scan routine takes over and sets all but one at a time back to high. Thus, you get a visual and an audible warning when nearing the end of the line. It is also possible to trigger the bell by monitoring the cursor location at $\$ 0200$, but then the C1P owner will get a sound three times for each line, due to the 24 character screen width.

The C2 user can make the change easily. Other variations, such as PEEKing the screen to see if the scanned location has a blank or a character, suggest themselves. As my screen editor is for a modified C1P with 64 characters, and is written in machine language, I use a variation of this method. With the cursor travelling from the upper left comer of the screen, it is necessary to AND the low byte of its location with \#\$3F to get only the location in the line, rather than the location in the page.

## Circuit Description

The bell itself is a model of simplicity. Only two chips are required, and both are readily available at Radio Shack or similar stores. What we're doing is using the keyboard as an output port. The problem is that the keyboard scan routine in the monitor also uses it as both an output and an input port, and continually switches the rows, and then checks the columns for a key closure. The trick here is to use a combination of rows, which the scan routine does not do. Some programs must, as I get an

## Listing 1

```
10 REM --BELL & MARK FOR 24 CHR OSI ClP
20 REM --C.L. STANFORD
30 REM
40 FOR X = 216 TO 235: READ D: POKE X,D: NEXT
50 POKE 536,216: POKE 537,0
60 DATA 169,64,197,14,208,10,169,161,141,124
70 DATA 211,169,0,141,0,223,32,186,255,96
```



Figure 1: Schematic
occasional odd ring. But this is very seldom, and never occurs in such a way as to interfere with its main function.

The detector IC is a quad dual input NOR gate, and two of the four gates are used. The first will go high only when both inputs are low. Otherwise, its output remains low. The second is wired as an invertor to condition the signal for the oscillator. That is an NE556 (the dual 555 timer). Of course, two 555 's can be used just as well, but I wanted to reduce package count to save space. The front half of the 556 is wired as a monostable multi-vibrator, and the R/C combination used gives a tone duration of about $1 / 5$ of a second. The second half of the 556 is on only while the output of the first is high. It is wired as an astable multi-vibrator with a frequency of about 1 KHz . Its output is wired directly to a small speaker through an electrolytic capacitor and a low-value resistor. The result is a sharp highpitched "beep" whenever the keyboard rows go low.

## Building the Bell Circuit

Generally, wire wrap is best for a project of this size, although the Radio Shack dual IC prototype board can be used if a large enough case is selected. Also, the speaker size will dictate other dimensions to a certain degree. In other words, select components which will fit into your box! You can use either a 74LSO2 for ICl as shown, or a CMOS CD4001AE. If the CMOS chip is chosen, change the 5 K pullup resistors to 100 K , and be sure to connect unused inputs $5,6,8$, and 9 to ground. Otherwise, both will work fine, and the CMOS design will use a fraction of the power of the LS chip. None of the components is critical, and substitutions can be made within reason. Increasing the
value of either the resistor or capacitor associated with pins 1 and 2 of IC2 will result in a longer tone. Increasing those connected to pins 8,12 , and 13 will result in a lower pitch.

Drill your case for a four-conductor cable, and cut one to a suitable length. The connector can be any of several, depending on the configuration of your computer. Superboard owners can just use a Molex pin plug. C1P's need a bit more sophistication. I had previously brought all the rows and columns to the front of my C1P on a DB25 (RS-232) connector, so it was easy. A very good plug and socket available everywhere is the European DIN series. Mount the socket carefully on either the front or rear panels of your computer, and connect to the main board at jack J4. Pins 1, 2 , and 10 have rows 1,7 , and 6 respectively; pick any two. You will have to connect an additional wire to +5 volts at any convenient location on the board. There is a good ground location near the jack.

## Other Applications

Shortly after building this add-on circuit, I found a pretty nice Breakout game written in BASIC for the C1P in a magazine. Adding the bell was simple!

The program tested for the paddle, walls, etc., with IF...THEN statements. I just keyed "POKE 57088,0' within each dependent statement line, and now the "bell" rings every time the puck hits any obstruction. The bell does not retrigger, as Control/ C is not disabled, and the keyboard scan is thus in continuous operation. If Control/C is disabled, a "POKE 57088,255" will bt required to turn off the bell.

There is absolutely no reason this circuit cannot be connected to a port or just about any computer. It will, o course, be a lot harder to control if thr BASIC interpreter does not have Micro soft's vector format, but this little bit o hardware eliminates the need to pro gram the port to make the tone in rea time; just POKE it on, POKE it off, ans resume the program.

## ACRO

[^3]| Listing 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| BELL RINGER |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | LINLEN | EPZ \$0E |  |
|  | GETCHR | EQU \$FFBA |  |
|  | ; |  |  |
|  |  | ORG \$D8 |  |
|  |  | OBJ \$800 |  |
|  | ; |  |  |
| OOD8 A940 |  | LDA \#\$40 | : LINE LENGTH |
| OODA C50E |  | CMP LINLEN | ; CHECK IT |
| OODC DOOA |  | BNE END |  |
| OODE A9Al |  | LDA \#\$A1 | ; PUT A SQUARE ON |
| 00E0 8D7CD3 |  | STA \$D37C | ;SCREEN AT LINE END |
| 00E3 A900 |  | LDA \$ \$00 | ;RING THE BELL |
| OOE 5 8DOODF |  | STA \$DF00 |  |
| OOE8 20BAFF | END | JSR GETCHR | ; GET A CHARACTER |
| OOEB 60 |  | RTS |  |

# Monobyte Checksum Dumper for C1P 

## This two page machine language dump/load utility provides fast tape I/O and checksum protection.

Peter D.H. Broers
Overijsselstr. 9
5144 EH WAALWIJK
The Netherlands

This routine saves programs or data to tape and uses \$1E00-1FFF. When relocated, locations 1E4F (1F) and 1E54 ( 00 ) have to be replaced by the high/low bytes of the LOADER-start location (\$1F00 here).

The routine is entered at $\$ 1 E 00$ (.1E00G in monitor) and prompts

## CHECKSUM DUMPER

FRST/LAST/AUTO ?
(first location, last +1 and autostart)
waiting for 12 valid hex digits to be typed in, (no corrections, sorry); next it prompts

## START RECORDER

waiting for a carriage return from the keyboard.

It then dumps a loader (1F00-1FFF) and next the program or data in blocks of 256 bytes. The last block may be shorter. The format is:
$C R$, ten zeroes, line feed (the carriage return is neglected)
; identifier of a block of data
0240 four bytes (hex address, in ASCII)


0 counter (for a full block, or less, for a shorter block (binary byte)
DATA (up to 256 bytes, no ASCII, no masked off bits: full binary)
L a binary byte giving the checksum low
H a binary byte giving the checksum high

The checksum is the binary sum of all the data bytes in the block; the "household bytes" such as the CR, zeroes and LF, identifier, address and counter and the checksum itself, are not included in the count.

After the last block, comes the autostart: "\$1300." When loaded, the loader starts itself, and after the checksum load is completed, the machine goes to the autostart location, which may be the entry point of the routine or any other location.

At 300 bauds, the loader takes about 30 seconds to come in, and 10 seconds for any page. (My 4.5K assembler loads in about $31 / 2$ minutes.) The MONITOR ' $L$ ' format (hex + carriage return) takes about 9 minutes, and the hex-checksum format (OSI standard?) about the same time. There should be no problems at 600 baud or more, as long as the cassette supports the higher baud rate.

The program might be shortened to fit within one page if one does not use the checksum control. I tried a ' monobyte dumper' without a checksum, and no blocks. The whole program dumped one byte after the other, and it worked all right. However, the time one wins by this fastest possible dump is very little, as this checksum dump takes only 20 household bytes per page.

Peter Broers is a grammar school teacher of French, and a member of the Dutch province of Brabant Superboard Users Group BRABOSI. He is trying to introduce a small computer in the school for computer class and administrational services. His main interest lies in system programs.

| Listing 1 (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| 184A | ; |  |  |
| 1E4A A203 | MACHIN | LDX \#\$03 | ;PRINT"FIRST/LAST/ALTOP" |
| 1E4C 20961F |  | JSR PRMPTS |  |
| 1E4F A005 |  | LDY \# ${ }^{\text {0 }}$ O5 | ;GET 6 HEX (2 DIGITS EACH) ADDRFSSES |
| $1 \mathrm{E51} \mathrm{20731F}$ |  | JSR ADRIN | ;AND STIORE THEM IN ADRES/END/POINIER |
| 1E54 A204 |  | LDX *\$04 |  |
| $1 \mathrm{E56} 20961 \mathrm{~F}$ |  | JSR PRMPTS | ;PRINT "READY?" |
| 1E59 2000FD |  | JSR SFDOO | ;GET KEY |
| 1E5C C959 |  | OMP 'Y | ;IF KEY IS "Y". THEN PROCEED |
| 1E5E DOEA |  | ENE MACHIN | ;EISE REDO PRCMPT "FIRST/LAST/ALHTO?" |
| 1E60 20F7FF |  | JSR SFFF7 | ; SAVE |
| 1263 | ; |  |  |
| 1563 A205 | DMPLOD | LIX \#\$05 | ;DUMP THE LOADER IN "MCNITOR LOADARLE" |
| 1E65 20961F |  | JSR PRMPTS | ;FORMAT, PRINTING LOADER START ADDRESS |
| 1E68 A200 |  | LIX | ; (". $1 F 00 /{ }^{\prime \prime}$ AS SUPPLIED HERE) |
| 1E6A | ; |  |  |
| 1E6A BD001F | LOOPB | LIA LOADER, X | ; AND 256 BYTES AS 2 HEX DIGITS, |
| 1E6D 20DFlE |  | JSR MONOUT | ;PLUS CARRIAGE REIURN |
| 1E70 E8 |  | INX |  |
| 1E71 D0F7 |  | ENE LOOPB |  |
| 1E73 A206 |  | LIX $\#$ \$06 | ;PRINT THE LOADER SEIF-START ADDRESS |
| 1E75 20961F |  | JSR PRMPTS | : (".1F00G", AS SUPPLIED HERE) |
| 1E78 | ; |  |  |
| 1E78 A900 | CHIDMP | 1DA $\ddagger$ \$00 | ;RESET THE CONNTER TO TERD |
| 1E7A 85E8 |  | STA CNIR |  |
| 1E7C 38 |  | SEC | ;CALC NMMBER OF BYTES STIIL TO |
| 1E7D A5E2 |  | LDA END | ;BE DONE, USIING CHDCKSUM LOW REGISTER |
| 1E7F E5EA |  | SBC PNIR | ;TO STORE THE LOW RESULT TEMPORARILY. |
| $1 \mathrm{EP1}$ 85E6 |  | STA CHCK |  |
| 1 E83 A5E3 |  | LDA EEND+1 | :CALCuLATE THE NMMRER OF PAGES |
| 1E85 E5E5 |  | SBC PNITR+1 |  |
| 1 E 73041 |  | EMI OFF | ; IF OVER \$7F, THEN READY (NDGCAITVE!) |
| 1889 D006 |  | ENE BLOCK | ;IF NOT ZERO, THEN MDRE WHCLE PAGES |
| 128B A5E6 |  | LDA CHCK | ; IF ZERO, THEN RESET COUNIER TO LOW |
| 1E8D 85E8 |  | STA CNIR | ;RESULT (POSSIBLY Less tiran 256) |
| 1E8F F039 |  | EEO OFF | ; If LOW RESULT 2 ero, then ready \& OFF |
| 1 l 91 | ; |  |  |
| $1 \mathrm{E91} 206 \mathrm{CAB}$ | BLOCX | JSR \$A86C | ;PRINT CR, 10 ZERTOES AND LF |
| $1 \mathrm{E94}$ A93B |  | LDA '; | ;PRINT BLOCK IDEMITFIER |
| $1 E 96$ 20EEFF |  | JSR BYTOUT |  |
| 1 E 99 A5E5 |  | LDA PNIRTl | ;SAVE BIOCK ADDR IN HEX FOFmat |
| 1E9B 20E71E |  | JSR HEXXOUT |  |
| 1E9E A5E4 |  | IDA PNIR |  |
| 1EAO 20E71E |  | JSR HEXOUT |  |
| $1 \mathrm{EA3}$ A5E8 |  | LDA CNIR | ;SAVE THE COUNIER IN BINARY |
| 1EAS 20BIFC |  | JSR SAVBY' |  |
| 1EAS A000 |  | LDY \# $\$ 00$ | ;RESET THE CHECKSUM TO ZERRO |
| IEAA 84E6 |  | STY CHCX |  |
| 1EAC 84E7 |  | STY CHCX +1 |  |
| 1EAE | ; |  |  |
| leaE blea | LOOPC | LDA (PNTR), Y | ;SAVE THE BLOCK BYTE EY BYTE |
| 12BO 20B1FC |  | JSR SAVEYT |  |
| 1EB3 20691F |  | JSR ADCHCK | ; ADDING IT TO THE CHECKSUM |
| 1EB6 C8 |  | INY |  |
| $1 E B 7$ C4E8 |  | CPY CNIR | :IF BLOCK DCNE, |
| 1EB9 DOF3 |  | ENE LOOPC |  |
| lebs A5E6 |  | LDA CHCK | :THEN SAVE THE CHECKSUM IN BINARY, |
| 1EBD 20B1FC |  | JSR SAVBYT | ;LOW FIPST, HIGH NEXT |
| 1ECO A5E7 |  | IDA CHCK+1 |  |
| 1EC2 20B1FC |  | JSR SAVEYT |  |
| 1EC5 E6E5 |  | INC PNITR+1 | ;NEXT PAGE |
| 1EC7 4C781E |  | JMP CHDUMP | ; REDO THE Whote thing |
| 1ECA | ; |  |  |
| 1ECA 206CAB | OFF | JSR \$AB6C | :PRINT CR, 10 ZEROES, AND LF |
| 1ECD A924 |  | LDA '\$ | ;PRINT THE ALTOSTART IDENTIFIER "\$" |
| 1ECF 20EEFF |  | JSR BY'TOUT |  |
| 1ED2 A5E1 |  | LDA ADRES +1 | ;PRINT THE AUTOSTART ADDRES IN HEX |
| LED4 20E71E |  | JSR HEXCOT |  |
| 1ED7 A5EO |  | LDA ADRES |  |
| 1ED9 20E71E |  | JSR HEXOUT |  |
| 1 EDC 4COOFE |  | JMP \$FEOO | ; AND GO TO MONITOR OR ANY LOCATICN |
| 1EDF | ; |  |  |
| 1EIF 20E71E | MONOUT | JSR HEXOUT | ;SUBROUIINE TO DUMP A BYTE AS |

## L.lsting 2



## OHIO SCIENTIFIC

S-FORTH - a full implementation of Fig-FORTH including editor, virtual disk sub-system, and compatibility with OS65D-3 on $5^{1 / 4^{\prime \prime}}$ or $8^{\prime \prime}$ disk. \$34.95.

Source listing \$24.95.
Both for \$49.95.
TOUCH TYPING MADE EASY - 15 lesson set teaches you to "touch type". Now also available for the C1P. 8K. \$19.95.
TITANIC QUEST - a real time search where you risk your remaining supplies to find the Titanic. 8K. \$6.95.
TEXT EDITOR - the best screen text editor available for OSI C4P, C8P disk systems. $\$ 19.95$.
Send for our FREE
software and hardware catalog. Includes photos and complete descriptions of all game, utility, and business software.

Aurora Software Associates P.O. Box 99553

Cleveland, Ohio 44199 (216) 221-6981


## Charge MICRO and MICRO Books!

MICRO now accepts VISA and Mastercard. Credit card holders around the world can now order subscriptions and books by phone or mail.

Call (617) 256-5515 between 9:00 A.M. and 5:00 P.M. and say "Charge it!"

Or mail your order with your credit card name, number, and expiration date to:

Order Department MICRO
P.O. Box 6502

Chelmsford, MA 01824

## International Orders

If you are outside the U.S., you may pay by:

1. VISA or Mastercard or
2. International Money Order

We no longer accept bank drafts from foreign
banks-even if the funds are drawn on an account in a U.S. bank! The rising bank charges now make payment by this method prohibitive.

Listing 2 (Continued)

| 1580 19E000 |  | ORA ADRES, Y |  |
| :---: | :---: | :---: | :---: |
| $1 F 83$ 99E000 |  | STA ADRES, Y |  |
| 178688 |  | DEY |  |
| 1587 10EA |  | BPL ADRIN | ;REDO FOR Y +1 BYTES |
| 158960 |  | RTS |  |
| 1F8A | ; |  |  |
| 1F8A 20EBFF | DIGIN | JSR BYTIN | ;GET ONE HEX DIGIT |
| 1F8D 20EEFF |  | JSR BYTOUT | ;DISPLAY IT |
| 1F90 2093FE |  | JSR \$FE93 | ;TEST IT FOR VALID hiex And Make binary |
| 1 1993 30F5 |  | BMI DIGIN | ;0-15. IF NOT VALID, REDO. |
| 1 F95 60 |  | RTS |  |
| 1F96 | ; |  |  |
| $1 \mathrm{F96}$ A0FF | PRMPTS | LDY \#\$FF | ;MESSAGE PRINTER "PROMPTS" |
| $1 \mathrm{F98} 08$ | PLOOPA | INY | ;FIND MESSAGE NR. X |
| $1 F 99$ B9AE1F |  | LDA MESSAG, Y |  |
| 1F9C DOFA |  | ENE PLOOPA |  |
| 1F9E CA |  | DEX |  |
| 1F9F DOF7 |  | ENE PLOOPA |  |
| 1 FAL O8 | PLOOPB | INY | ;AND PRINT (\& SAVE?) |
| lFA2 B9AE1F |  | LDA MESSAG, $Y$ |  |
| 1FA5 F006 |  | BEQ REIURN |  |
| 1FA7 20EEFF |  | JSR BYTOUT |  |
| IFAA 4CAllF |  | JMP PLOOPB |  |
| 1FAD 60 | REIURN | RTS |  |
| 1 FAE | ; |  |  |
| 1FAE 00 | MESSAG | BYT 00 | ;MESSAGE 0 |
| 1FAF | ; |  |  |
| 1FAF 455252 | MESSA | ASC 'ERROR << HIT G' | ; ERPOR MESSAGE |
| 1FB2 4F5220 |  |  |  |
| 1 FB5 3C3C20 |  |  |  |
| 1FB8 484954 |  |  |  |
| 1FBB 2047 |  |  |  |
| IFBD 00 |  | BYT 00 | ;DURING THE LOADING |
| 1FBE | , |  |  |
| IFBE OAOD | MESSB | HEX OAOD | ;MESSAGE 2-MESSAGE WHEN |
| 1FCO 44554D |  | ASC 'DUMP $B / M$ ' | ;STARTING THE DUMPER |
| 1FC3 502042 |  |  |  |
| IFC6 2F4D |  |  |  |
| 1 FCB 00 |  | BYT 00 |  |
| 1FC9 | ; |  |  |
| $1 F C 9$ OAOD | MESSC | HEX OAOD | ;MESSAGE 3-ASKING FOR |
| IFCB 465253 |  | ASC 'FRST/LAST/AUTO?' | ' ;THE ADDRESSSES |
| 1FCE 542F4C |  |  |  |
| 1FD1 415354 |  |  |  |
| 1FD4 2 F 4155 |  |  |  |
| 1FL7 544F3F |  |  |  |
| $1 F D A$ OAOD |  | HEX OAOD |  |
| 1FDC 00 |  | BYT 00 |  |
| 1FDD | ; |  |  |
| 1FDD OAOD | MESSD | HEX OAOD | ;MESSAGE 4-ASKING FOR A "Y" |
| 1FDF 524541 |  | ASC 'READY ?' | ;WHEN READY TO DUMP |
| 1FE2 445920 |  |  |  |
| 1FE5 3F |  |  |  |
| 1FE6 00 |  | BYT 00 |  |
| 1F6A 65E6 |  | ADC CHCK |  |
| 1F6C 85E6 |  | STA CHCK |  |
| 1F6E 9002 |  | BCC *+4 |  |
| 1 F70 E6E7 |  | INC CHCK +1 |  |
| 1 F72 60 |  | ETS |  |
| $1 F 73$ |  |  |  |
| 1F73 208AlF | ADRIN | JSR DIGIN | ;GET 2 HEX DIGITS |
| 1F76 OA |  | ASt | ; AND CALCULATE BYTE, STORING IT |
| 1F77 OA |  | ASL | :IN LOCATION "ADRES+Y" |
| 1 F78 OA |  | ASL |  |
| IF79 OA |  | ASL |  |
| 1F7A 99E000 |  | STA ADRES, $Y$ |  |
| 1F7D 208AlF |  | JSR DIGIN |  |

NCRO

## 6 GRAPHICS

## FOR OSI COMPUTERS

$\star$ You Can Produce The Images Shown Or Yours And Program Motion With Our 256 By 256 High Resolution Graphics Kit.
Thats 65,536 Individually Controlled
Points On Your TV Screen.
$\star$ Increase Column/Line Display.
You Can Set Up Your Own Graphic Pixels Including Keyboard Characters And Unlimited Figures.
$\star$ This Kit Includes All Parts, Software And Assembly Instructions Required To Get Up And Running.
The Included 8k Of 2114 Memory
Is Automatically Available When Not Using The Graphics. Boot Up And See 8k More Memory. $\star$ Adding The Kit Does Not Affect Your Existing OSI Graphics. Use Both At The Same Time Or Separately.
$\star$ Buy The Entire Kit, Including Memory, For \$185.00 Or A Partial Kit For Less If You Have Parts. Board And Instructions \$40.00. Instructions Include Software.

For This Kit Or A Catalog Of Other Kits, Software And Manuals Call Or Write:

MITTENDORF ENGINEERING 905 Villa Neuva Dr.
Litchfield Park, Az. 85340 (602)-935-9734

# Line Editor for OSI 540 Board 


#### Abstract

The program presented here allows elementary line editing functions for OSI computers using BASIC-In-ROM. The reader can expand the program as he feels is necessary to Include more advanced features, such as Insert and delete.


E.D. Morris Jr.<br>3200 Washington<br>Midland, Michigan 48640

Users of OSI computers are painfully aware that if a mistake is discovered in the 63rd character of a BASIC line, the entire line must be retyped. I have watched in awe as PET owners zip the cursor across the screen and correct the offending character in a few keystrokes. OSI machines lack this very useful feature as standard equipment. However don't despair, this article describes a software patch to allow line editing on OSI machines using the 540 video board and BASIC-in-ROM. The program provides the basic editing functions, but the user can add additional features as he wishes. The technique can also be applied to the C1P, subject to limitations discussed later.

A line editor must perform three functions. First it must find the line to be edited, then make the changes, and finally put the line back into the BASIC program. Finding the line is easy, just LIST it. The data is then on the screen. The line editor can read a character from the screen, copying it exactly, whenever a designated key is hit. If any other character is typed, that character is inserted into the new line instead of the screen character. Now comes the hard part: How do you get the line back into BASIC?

The new line must be inserted at the proper location, moving the rest of the program and refixing all the pointers.

This is exactly the job done by the BASIC input routines. The line editor can be much simpler if BASIC can be fooled into believing that you re-typed the entire line.

Let us first examine the workings of the BASIC input routines. After cold starting BASIC, try typing in the following line

## 10ABCDE

If you press RETURN, this line will be entered into the BASIC text. However, instead of RETURN, press the BREAK key and jump to the machine monitor mode. Examine the data stored at locations $\$ 0013$ to $\$ 0019$. You should find

| Location | Data | ASCII |
| :---: | :---: | :---: |
| $\$ 0013$ | 31 | 1 |
| $\$ 0014$ | 30 | 0 |
| $\$ 0015$ | 41 | A |
| $\$ 0016$ | 42 | B |
| $\$ 0017$ | 43 | C |
| $\$ 0018$ | 44 | D |
| $\$ 0019$ | 45 | E |

The data at these locations is the hex representation of the ASCII characters you just typed. Locations $\$ 0013$ through $\$ 005 \mathrm{~A}$ are the input buffer. Thus to simulate keyboard input, the line editor must store the corrected line in this buffer. The next trick is to get BASIC to accept this data. First the " X ' and ' Y ' registers must be set to point at the input buffer and then a jump made to the proper location in BASIC.

Try the following experiment. Cold start BASIC, then jump to the machine monitor. Using the monitor, fill locations $\$ 0013$ to $\$ 0019$ with the hex data from the above example adding a $\$ 00$ at location \$001A. Again using the machine monitor, write the following program at $\$ 0250$.


Then execute the program starting at $\$ 0250$. The pointers are set to the input buffer, then a jump is made into ROM. There will be no indication that anything happened, but you are now back in BASIC. Type LIST and

## 10ABCDE

will appear. This technique has convinced BASIC to accept a line of data stored in the input buffer as if it had been typed in. Try using this method to input other lines of data, remembering to make the final character a null or $\$ 00$.

The final link to writing a line editor is now at hand. Following is a listing of an editor assembled at address $\$ 0240$. The program assumes that the line to be edited has been previously listed and now appears on the screen starting at \$D641. The line editor is called through the USR function. After clearing several screen locations, the program displays an "up arrow" (\$5E) as a cursor immediately below the line to be edited. The subroutine at \$FFEB gets a character from the keyboard. If this character is a "space bar" (\$20), one character is copied from the old line into the input buffer and displayed on the screen below the cursor. The cursor will move backwards on a "backspace" or $\$ 5 \mathrm{~F}$ input. A RETURN or \$0D indicates that you are finished editing that line. Since the space bar is used for direct copying, something else must be used for a "space". I have chosen the "\#" sign or $\$ 23$. Any other character typed is assumed to be corrected input, and is stored in the buffer and on the screen.

The RETURN key causes the program to display "OK" and places a null at the end of the input line. The pointers are set as described above, and a jump made back into BASIC.

If the program is moved to reside in a different memory location, the jumf absolute instructions at lines $\$ 0282$ anc $\$ 0288$ must be changed.

For those of you who are not into machine code, I have included a BASIC program to set up this patch and then erase itself. Once the line editor is entered, either by BASIC or via machine code, load the program you wish to edit. Then add the following line to your BASIC program:

## 1 POKE 11,64: POKE 12,2: $Z=\operatorname{USR}(1)$

LIST the line you wish to edit, then type RUN. This will call the line editor and display the cursor directly under the listed line. The various valid commands were listed above. To run your program, either delete line one or enter RUN 10 |assuming your first line is 10). Before saving the corrected program, delete line one.

Now for the limitations of this simple editor. The line to be corrected must appear at a fixed position on the video screen. This is determined by the screen read instruction LDA \$D641,X. The editor will not work if the line is not exactly at this position. For example, if a line is longer than 64 characters, the screen will scroll, moving the text up one line. A similar problem occurs when attempting to edit the last line of a program: the listed line appears too low on the video screen. In this case simply hit a RETURN to scroll up one line, and then type RUN to enter the editor.

Lines longer than 64 characters can be edited by changing the screen read instruction from LDA \$D641,X to LDA \$D601,X. This is accomplished by using different keys for the "copy' function, depending on the length of the line being edited. Lines shorter than 64 characters are copied by pressing the space bar. Longer lines are copied with the exclamation (!) key.

This editor can be modified to run on a C1P or Superboard by changing the appropriate screen locations. A BASIC listing of a C1P version is also given below. The editor is limited to a single video line, which, in the case of the C1P, is only 25 characters. In order to edit multiple lines, the editor must be able to skip over the unused bytes on the edges of the C1P video screen.


# OSI 

## AARDVARK

## NOW MEANS BUSINESS!

## WORD PROCESSING THE EASY WAY-

 WITH MAXI-PROSThis is a line-oriented word processor designed for the office that doesn't want to send every new girl out for training in how to type a letter.

It has automatic right and left margin justi fication and lets you vary the width and margins during printing. It has automatic pagination and automatic page numbering. It will print any text single, dauble or triple spaced and has text centering commands. It will make any number of multiple copies or chain files together to print an entire disk of data at one time.

MAXI-PROS has both global and line edit capability and the polled keyboard versions contain a corrected keyboard routine that make the OSI keyboard decode as a standard typewriter keyboard.

MAXI-PROS also has sophisticated file capabibilities. It can access a file for names and addresses, stop for inputs, and print form letters. It has file merging capabilities so that it can store and combine paragraphs and pages in any order.

Best of all, it is in BASIC lOS65D 51/4'" or $8^{\prime \prime}$ disk) so that it can be easily adapted to any printer or printing job and so that it can be sold for a measly price
MAXI-PROS - \$39.95

## THE EDSON PACK <br> ALL MACHINE CODE GAMES <br> FOR THE 8KCIP

INTERCEPTOR - You man a fast interceptor protecting your cities from Hordes of Yukky Invaders. A pair of automatic cannon help out, but the action speeds up with each incoming wave. It's action, action everywhere. Lots of excitement! \$14.95
MONSTER MAZE - An Arcade style action game where you run a maze devouring monsters as you go. If one sees you first, you become lunch meat. Easy enough for the kids to learn and challenging enough to keep daddy happy. $\$ 12.95$
COLLIDE - Fast-paced lane-switching excitement as you pick up points avoiding the jam car. If you succeed, we'll add more cars. The assembler code provides fast graphics and smooth action. $\$ 9.95$
SPECIAL DEAL-THE ENTIRE EDSON PACKALL THREE GAMES FOR $\mathbf{\$ 2 9 . 9 5}$

## THE AARDVARK JOURNAL

FOR OSI USERS - This is a bi-monthly tutorial journal running only articles about OSI systems. Every issue contains programs custom ized for OSI, tutorials on how to use and modify the system, and reviews of OSl related products. In the last two years we have run articles like these!

1) A tutorial on Machine Code for BASIC programmers.
2) Complete listings of two word processors for BASIC IN ROM machines.
3) Moving the Directory off track 12.
4) Listings for 20 game programs for the OSI.
5) How to write high speed BASIC - and lots more -
Vol. 1 (1980) 6 back issues - $\$ 9.00$
Vol. 2 (1981) 2 back issues and subscription for 4 additional issues - $\$ 9.00$.

ACCOUNTS RECEIVABLE - This program will handle up to 420 open accounts. It will age accounts, print invoices (including payment reminders) and give account totals. It can add automatic interest charges and warnings on late accounts, and can automatically provide and calculate volume discounts.

24 K and 0 S65D required, dual disks recommended. Specify system
Accounts Receivable. \$99.95

*     * $\operatorname{sPECIAL}$ DEAL - NO LESS! * *

A complete business package for OSI small systems - (C1, C2, C4 or C8). Includes MAXIPROS, GENERAL LEDGER, INVENTORY, PAYROLL AND ACCOUNTS RECEIVABLE all the programs the small busiNESS MAN NEEDS. $\$ 299.95$
P.S. We're so confident of the quality of these programs that the documentation contains the programmer's home phone number!

## SUPERDISK II

This disk contains a new BEXEC* that boots up with a numbered directory and which allows creation, deletion and renaming of files without calling other programs. It also contains a slight modification to BASIC to aliow 14 character file names

The disk contains a disk manager that contains a disk packer, a hex/dec calculator and several other utilities.

It also has a full screen editor (in machine code on C2P/C4) It that makes corrections a snap. We'il also toss in renumbering and program search programs - and sell the whole thing for SUPERDISK II \$29.95 ( 5 1/4') $\$ 34.95$ ( $8^{\prime \prime}$ ).


## BOOKKEEPING THE EASY WAY

 - WITH BUSINESSOur business package 1 is a set of programs designed for the small businessman who does not have and does not need a full time accountant on his payroll.

This package is built around a GENERAL LEDGER program which records all transactions and which provides monthly, quarterly, annuai, and year-to-date PROFIT AND LOSS statements. GENERAL LEDGER also provides for cash account balancing, provides a BALANCE SHEET and has modulas for DEPRECIATION and LOAN ACCOUNT computation.
GENERAL LEDGER (and MODULES) $\$ 129.95$
PAYROLL is designed to interface with the GENERAL LEDGER. It will handle annual records on 30 employees with as many as 6 deductions per employee.
PAYROLL - \$49.95.
INVENTORY is also designed to interface with the general ledger. This one will provide instant information on suppliers, initial cost and current value of your inventory. It also keeps track of the order points and date of last shipment.
INVENTORY - \$59.95.


#### Abstract

GAMES FOR ALL SYSTEMS GALAXIAN - 4K. One of the fastest and finesi arcade games ever written for the OSI, this one features rows of hard-hitting evasive dogfighting aliens thirsty for your blood. For those whe loved land tired of) Alien Invaders. Specif) system - A bargain at $\$ 9.95$

MINOS - 8K - - Features amazing 3D graphics You see a maze from the top, the screen blanks and when it clears, you are in the maze at groune level finding your way through on foot. Realistia enough to cause claustrophobia. - \$12.95

\section*{NEW - NEW - NEW}


LABYRINTH - 8K. This has a display back ground similar to MINOS as the action take place in a realistic maze seen from ground level This is, however, a real time monster hunt as yo track down and shoot mobile monsters on foot Checking out and testing this one was the mos fun I've had in years! - \$13.95.

TIME TREK - 8K - Real Time and Real graphic Trek. See your torpedoes hit and watch you instruments work in real time. No more ur realistic scrolling displays! $\mathbf{\$ 9 . 9 5}$

SUPPORT ROMS FOR BASIC IN ROM M/ CHINES - C1S/C2S. This ROM adds line ed functions, software selectable scroll window bell support, choice of OSI or standard keyboar toutines, two callable screen clears, and softwai support for $32-64$ characters per line vider Has one character command to switch mod 2 C1P from 24 to 48 character line. When it stalied in C2 or C4 (C2S) requires installatic of additional chip. C1P requires only a jump change. - \$39.95
C1E/C2E similar to above but with extende machine code monitor. - $\$ 59.95$

## Please specify system on all orders

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards for OSI systems. Our $\$ 1.00$ catalog lists it all and contajns free program listings and programming hints to boot.

## In a Wrap-around Universe

## A novel variation on the oldest computer game of all.

Paul Krieger
3268 S. Cathay Cr. Aurora, Colorado 80013

Ever wonder what would happen if your gliders could soar for a 1000 generations? Where does a puffer train go? Here is a wraparound version of John Conway's cellular automata "LIFE."

Life is normally limited to a fairly small grid of squares where patterns run out of space after only a few generations. In this version it is a string of 1024 cells so a pattern going off either side of the screen will re-appear at the other.

By testing the first 3 bits of the 4th, 8 th, and 12 th bytes, a matrix is created and the standard rules of LIFE are applied. The 1st 3 bits of byte 4 are numbered $1,2,3$. The 1 st 3 bits of byte 8 are numbered $4,5,6$ and the 1 st 3 bits of byte 12 are 7,8 , and 9 . Cell 5 is the subject cell.

First, the program counts the number of bits (except for \#5) that are " 1 ." Then bit 5 is tested to determine if it is on or off. If bit 5 is on and there were exactly 2 or 3 cells on, it is left on. If there were not, cell 5 is set to zero. If 5 was not on and exactly 3 of the other cells were on, it is set on.

Once the cells have been counted and set the 128 bytes are shifted 1 bit left, and the process continues again until all 128 bytes have been tested. As they are set, the bits being set are transformed into bytes on the screen so that at this point, they must be copied back to the bit list before the entire process begins once again.

```
Main Program
REM
REM VIRIUAL LIFE
REM BY PAUL KRIEGER
REM
 GOSUB 1400
 Q=111
 PRTNT "INSITRUCTIONS"
 PRINT
 PRINT "THIS PROGRAM CREATES"
 PRINT "A SIMULATION OF"
 PRINT "ONE CELIED LIFE."
 PRINT "ENIER A PATTERS"
 PRINT "OF CELLS TO START."
 PRINT "CURSOR CONTROLS": PRINT
 PRINT "O=UP, P=RIGHT"
 PRINT "K=LEFTT, I=DOWN"
 PRINT "J=ERASE,I=CENIER"
 PRINT "+\proptoDEPOSIT CELL"
 PRINT "E=GENERATE CELIS": PRINT "T=END PROGRAM"
 PRINT
 PRINT "TYPE 'R' TO CONTINJE"
 INPUT AS: GOSUB 1400
 INPUT "(R)ANDCM OR (P)LAN";AS
 IF LEFTS (AS,1) = "R" THEN 200
 GOSUB 1400
S = 53775
POKE S,43: GOSUB 1500
 POKE 11,00: REM LOW DESTINATION
 POKE 12,25: REM HIGH, =$1900
 Q = USR (Q): GOTO 2100
 .REM 2100 IS PAUSE BEIWEEN SCREENS
 REM 138-GOTO GENERATE CELLS
 PRINT : PRINT "HOW MANY CEILS"
 PRINT "SHOULD I GENERATE";
 INPUT E
 GOSUB 1400
 FOR C=1 TO E
D = INT (1024 * RND (1) + 1)
D D = D + 53379
 POKE D,Q
 NEXT C
 GOTO }13
 REM CLEAR SCRETN SUBROUTINE
 POKE 11,237
 POKE 12,25: REM SETUP $19ED
 20Q = USR (Q)
 REIURN
 REM TEST CURSOR KEYS
 POKE 530,1
 K=57088
 POKE K,223
 IF PEEK (K) = 191 THEN 1830: REM L,DOWN
 IF PEEK (K) = 223 THEN 1870: REM O,UP
 POKE K,247
 IF PEEK (K) = 251 THEN 1920: REM J,ERASE
 1580 IF PEEK (K) = 253 THEN 1940: REM K,LEFT
1590 POKE K, 253
```


## REM

```
REM VIRIUAL LIFE
REM BY PAUL KRIEGER
REM
GOSUB 1400
\(Q=111\)
PRINT "INSTRUCTIONS"
PRINT
PRINT "THIS PROGRAM CREATES"
PRINT "A SIMULATION OF"
PRINT "ONE CEILED.LIFE."
PRINT "ENIER A PATITERN"
PRINT "OF CELLS TO START."
PRINT "CURSOR CONTROLS": PRINT
PRINT " \(\mathrm{O}=\mathrm{UP}, \mathrm{P}=\) RIGHT"
PRINT "K=[EFFT, L=DONN"
PRINT "J=ERASE, I=CENIER"
PRINT "+ \(=\) DEPPOSIT CELL"
PRINT "E=GENEERATE CFITS": PRTNT "T=END PROGRAM"
PRINT
PRINT "TYPE 'R' TO CONTINUE"
INPUT A\$: GOSUB 1400
INPUT "(R)ANDDCM OR (P)LAN";AS
IF LEFTS (AS,I) = "R" THEN 200
GOSUB 1400
\(\mathrm{S}=53775\)
POKE S,43: GOSUB 1500
POKE 11,00: REM LOW DESTINATION
POKE 12,25: REM HIGH, \(=\$ 1900\)
\(Q=\) USR (Q): GOTO 2100
REM 2100 IS RALJSE BEIWEEN SCREENS
REM 138-GOIO GENERATE CENLS
PRINT : PRINT "HON MANY CETIS"
PRINT "SHOULD I GENERATE":
INPUT E
GOSUB 1400
FOR C \(=1 \mathrm{TOE}\)
\(\mathrm{D}=\mathrm{INT}(1024\) * \(\operatorname{RND}(1)+1)\)
\(0 \mathrm{D}=\mathrm{D}+53379\)
POKE D,Q
NEXT C
300 GOTO 136
1399 REM CLEAR SCREEN SUBROUTINE
1400 POKE 11, 237
1410 POKE 12, 25: REM SETUP \$19ED
\(1420 Q=\) USR (Q)
1430 RETURN
1499 REM TEST CURSOR KEYS
1500 POKE 530,1
\(1510 \mathrm{~K}=57088\)
1520 POKE K, 223
1530 IF PEEK (K) \(=191\) THEN 1830: REM L, DOWN
1540 IF PEEK (K) \(=223\) THEN 1870: REM O,UP
1550 POKE K, 247
1570 IF PEEK (K) \(=251\) THEN 1920: REM J,ERASE
1580 IF PEEK (K) \(=253\) THEN 1940: REM K,LEFT
1590 POKE K, 253
```



This is a hybrid program for the Ohio Scientific C1P with 8 K of memory, written in both Microsoft BASIC and machine language. Since no page zero processing is done it should be fairly easy to convert it to any 6502 computer.

Key in the following machine language code using your monitor. Then you can save both the BASIC and the machine code with the SAVE/LIST, as though it were a BASIC program. While the tape is still running, and after the BASIC portion has finished type "RUN3000 return."

## Copy screen to matrix subroutine.

| 1900- |  | DO | LDA | \#\$DO |
| :---: | :---: | :---: | :---: | :---: |
| 1902- | 8D | OC 19 | STA | \$190C |
| 1905- | D8 |  | CLD |  |
| 1906- | A0 | 04 | LDY | \$\$04 |
| 1908- | A2 | 00 | LDX | \#\$00 |
| 190A- | BD | 00 D3 | LDA | \$D300, X |
| 1900- | C9 | 20 | CMP | *\$20 |
| 190F- | F0 | 08 | BEQ | \$1919 |
| 1911- | AD | 0418 | LDA | \$1804 |
| 1914- | 09 | 80 | ORA | \#\$80 |
| 1916- | 4 C | IE 19 | JMP | \$191E |
| 1919- | AD | 0418 | LDA | \$1804 |
| 191C- | 29 | 7F | AND | *\$7F |
| 191E- | 8D | 0418 | STA | \$1804 |
| 1921- | 20 | C2 19 | JSR | \$19C2 |
| 1924- | E8 |  | INX |  |
| 1925- | D0 | E3 | BNE | \$190A |
| 1927- | EE | OC 19 | INC | \$190C |
| 192A- | 88 |  | DEY |  |
| 192B- | DO | DD | BNE | \$190A |
|  | Test and set cells. Move result to screen. |  |  |  |
| 192D- | 60 |  | RTS |  |
| 192E- | A9 | D0 | LDA | *\$D0 |
| 1930- | 8D | 9A 19 | STA | \$199A |
| 1933- | AO | 04 | LDY | \#\$04 |
| 1935- | 4 C | 3E 19 | JMP | \$193E |
| 1938- | EA |  | NOP |  |
| 1939- | EA |  | NOP |  |
| 193A- | EA |  | NOP |  |
| 193B- | EA |  | NOP |  |
| 193C- | EA |  | NOP |  |
| 193D- | EA |  | NOP |  |
| 193E- | A2 | 21 | LDX | *\$21 |
| 1940- | A9 | 00 | LDA | \$\$00 |
| 1942- | 8D | $\begin{array}{lll}00 & 18\end{array}$ | STA | \$1800 |
| 1945- | A9 | 20 | LLA | \# \$20 |
| 1947- | 2 C | 0418 | BIT | \$1804 |
| 194A- | 08 |  | PHP |  |
| 194B- | 10 | 03 | BPL | \$1950 |
| 194D- | EE | 0018 | INC | \$1800 |
| 1950- | 28 |  | PLP |  |
| 1951- | 08 |  | PHP |  |
| 1952- | 50 | 03 | BVC | \$1957 |
| 1954- | EE | 0018 | INC | \$1800 |
| 1957- | 28 |  | PLP |  |
| 1958- | F0 | 03 | BEQ | \$195D |
| 195A- | EE | 0018 | INC | \$1800 |
| 195D- | A9 | 20 | LDA | \#\$20 |
| 195F- | 2C | 0818 | BIT | \$1808 |
| 1962- | 08 |  | PHP |  |
| 1963- | 10 | 03 | BPL | \$1968 |
| 1965- | EE | 0018 | INC | \$1800 |
| 1968- | 28 |  | PLP |  |
| 1969- | F0 | 03 | BEQ | \$196E |
| 196B- | EE | 0018 | INC | \$1800 |
| 196E- | A9 | 20 | LDA | \#\$20 |
| 1970- | 2 C | OC 18 | BIT | \$180C |
| 1973- | 08 |  | PHP |  |
| 1974- | 10 | 03 | BPL | \$1979 |
| 1976- | EE | 0018 | INC | \$1800 |
| 1979- | 28 |  | PLP |  |


| 197A- | 08 |  | PHP |  |
| :---: | :---: | :---: | :---: | :---: |
| 197B- | 50 | 03 | BVC | \$1980 |
| 197D- | EE | 0018 | INC | \$1800 |
| 1980- | 28 |  | PLP |  |
| 1981- | F0 | 03 | BEQ | \$1986 |
| 1983- | EE | 0018 | INC | \$1800 |
| 1986- | 2 C | 0818 | BIT | \$1808 |
| 1989- | 50 | 18 | BVC | \$19A3 |
| 198B- | AD | 0018 | LDA | \$1800 |
| 198E- | C9 | 02 | CMP | *\$02 |
| 1990- | 30 | OC | BMI | \$199E |
| 1992- | C9 | 04 | CMP | \#\$04 |
| 1994- | BO | 08 | BCS | \$199E |
| 1996- | A9 | 6 F | LDA | \# ${ }^{\text {6F }}$ |
| 1998- | 9 D | 00 D 4 | STA | \$D400, X |
| 1998- | 4 C | AD 19 | JMP | \$19AD |
| 199E- | A9 | 20 | LDA | \#\$20 |
| 19A0- | 4 C | 9819 | JMP | \$1998 |
| 19A3- | AD | 0018 | LDA | \$1800 |
| 19A6- | C9 | 03 | CMP | * ${ }^{\text {P }}$ |
| 19A8- |  | EC | BEQ | \$1996 |
| 19AA- | 4 C | 9E 19 | JMP | \$199E |
| 19AL- | 20 | C2 19 | JSR | \$19C2 |
| 1980- | E8 |  | INX |  |
| 1981- | FO | 03 | BEQ | \$1986 |
| 1983- | 4 C | 4019 | JMP | \$1940 |
| 1986- | EE | 9A 19 | INC | \$199A |
| 1989- | 88 |  | DEY |  |
| 19BA- | F0 | 03 | BEQ | \$19BF |
| 19BC- | 4 C | 4019 | JMP | \$1940 |
| 19BF- | 4 C | 0019 | JMP | \$1900 |
| Rotate 128 bytes left 1 blt. |  |  |  |  |
| 19C2- | 8A |  | TXA |  |
| 19C3- | 48 |  | PHA |  |
| 19C4- | 98 |  | TYA |  |
| 19C5- | 48 |  | PHA |  |
| 19C6- | A2 | 7 F | LDX | \$ $\$ 7 \mathrm{~F}$ |



There are 6 BASIC language subroutines and 4 machine code subroutines. The BASIC routines are:

1. Housekeeping, display instructions
2. Call machine screen clear
3. Test keys for setup cells
4. Perform cell setup screen commands
5. Read and Write machine code from tape into memory
6. Count cycles and pause between generations.

The machine routines are:

1. Copy screen to bit list
2. Test and set cells, move result to screen
3. Rotate 128 bytes left one bit
4. Clear screen.

Of special interest is the machine code read and store routine located in BASIC lines $3000-3110$. The 6 statements in 3000-3050 store machine code tape onto the end of a BASIC program when you type RUN3000. The 6 statements from 3070-3110 will read the machine code back into memory after the BASIC program is loaded. You can save any machine language code, using these 12 statements, by changing the low and high memory addresses in lines 3010 and 3070.

MORO

Quiz-The FOR Statement. Program Control With Decision Making-The IF-THEN Decision Maker; AND, OR, and NOT; IF-THEN-ELSE; Metric Conversion Program; Quiz-IF-THEN and IF-THEN-ELSE. Further Control-The WHILE Statement; REPEATUNTIL; Revising the Metric Program; GOTO Where; CASE: An Easier Way To Make Multiple Choices; CASE and bOOLEANs; The Metric Conversion Program Once Again; Quiz. Procedures (The Second Time Around) and FunctionsProcedures Once Again; Quiz-Parameters; Functions-the Cousin of Procedures; FORWARD-Naming a Procedure or Function Before Its Time; Quiz-Functions. STRINGs and LONG INTEGERs-Maximum STRING Length; STRING Intrinsics; Inputting Numbers With STRINGs; QuizSTRINGs; Using LONG INTEGERs for Increased Accuracy; Exercises; Quiz-LONG INTEGERs. More Data Types-ArraysLinking Scalars Together; Quiz-Arrays; Customized Types-'Enumerated UserDefined Types; Quiz-Enumerated UserDefined Types; Subrange Data Types; QuizSubrange Types; Sets; Quiz-Sets; Putting It All Together-The Tic-Tac-Toe Program. Appendices A: Pascal's Advantages-A Summary. B. Pascal's Bummers. C. Other

Parts of a Pascal System-Assembler; Library Linker; Dynamic Debugger. D. ASCII Character Codes. E. Assembly Language Interfacing-Why Use Assembly Language With Pascal?; How Pascal Handles Assembly Language; External Pro-

cedures and Functions; The Five Steps; A Practical Assembly Language Example: PEEKPOKE; The Pascal Library; Quiz. F. The 6502 Microprocessor. G. Inaccuracies of the Amortization Loan Formula. $H$. Answers to Quizzes. Index.

The Pascal Handbook by Jacques Tiberghien. Sybex, Inc. 2344 Sixth Street, Berkeley, California 94710), 1981, x, 476 pages, diagrams, $7 \times 9$ inches, paperbound.
ISBN: 0-89588-053-9
$\$ 14.95$
A comprehensive, alphabetical dictionary of every Pascal symbol, reserved word, identifier, and operator for most existing versions of Pascal, including Jensen \& Wirth (standard and CDC versions), H-P1000, OMSI(DEC), Pascal/Z, ISO, and UCSD Pascal. Each of the 180 entries contains the definition, syntax diagram, semantic description, implementation details, and program examples.


## SOFTWARE FOR OHID SCIENTIFIC

 VIDEO EDITORVideo Editor is a powerful full seremed editor for disk-based OSI systems with the polled keyboard (except Cip). Allows full cursor-control with insertion, deletion and duplication versions written in BASIC, this machine-code editor 15 corresident with BASIC (or the Assembler), autoloading into the highest three pages of RAM upon boot. Video Editor also provides single-keystroke contral of sound, screen format, color and background color- Eight-inch or mini disk: s14.95. Specify amount of RAM.

SOFT FRONT PANEL.
Soft Front Panel is a software single-stepper, slow-stepper and debugger-mmulator that permits easy development of 6502 machine code. SFP is a fantastic monitor, simultanmously Address traps, opcode traps, traps, on memory content and on port and stack activity are' all supported. This is for disk systems with polled keyboard and color (bsm monitor ok). Uses sound and color capabilities of OSI C2/C4/CB systems (not for C1p). Eight-inch or mini disk \$24.95. Specify amount of RAM. Manual only, $\$ 4.95$ (May be later credited toward software purchase). Six page brochure available free upon request.

TERMINAL CONTROL PROGRAM
OSI-TCP is a sophisticated Terminal Control Program for editing 0S-65D3 files, and for uploading and downloading these files to othme computers through the CPU board': serial port on OSI C2, C4 and Cs disk-based systeme with poditing of files, including comands for sending any text out the terminal port and saving whatever text cones back. INDUTL utility included for converting between BASIC source and TCP file text. Eight-inch or mini disk 339.95 . Manual only, $\$ 2.95$.

OSI-FORTH 2.0 / FIG-FORTH 1.
OSI-FORTH 2.0 is a full iaplementation of the FORTH Interest Group FORTH, for disk-based OSI systems (Ci,C2,C3,C4,C日). Running under OSSSDJ, it includes a resident text editor and 6502 assemblar. Dver one hundred pages of documentation and a handy reference card are provided. Requires 24 K (2OK Cip).
Eight-inch or aini disk $\$ 79.95$. Manual only, $\$ 9.95$. Eight-inch or aini disk \$79.95. Manual only, \$7.95.

All prices postpaid. Florida residents add 4\% tax. Dealer All prices are invited Allan 30 days for delivery. Dealer

WRITE FOR FREE CATALDG OF SOFTWARE AND HARDWARE
FOR OHID SCIENTIFIC!!

Technical Products Company Gainesville, Florida 32so4

## Three games. Meteor Mission is an asteroids game. Space Wars is a battle between two starships. Meteor Wars is a combination of the two above games. All three are two starships. Meteor Wars is a combination of the two above games. in machine language with fast, real time action, and super graphics. <br> \{3 ADVENTURE: IMMORTALITY <br> $\$ 11.95$ <br> You are an intrepid explorer searching for the fabled "Dust of Immortality". This is $\gamma$ <br>  and infinately changing track will heep you challa <br> dUNGEON CHASE <br> you explore a twenty level dungeon. <br> $\qquad$ <br> You are a trader in the distant future, traveling through 'stargates' to get to various star systems. Part video game, part board game, always challenging <br> ADVENTURE: MAROONED IN SPACE <br> $\$ 11.95$ <br> An adventure that runs in $8 \mathrm{~K}!$ Save your ship and yourself from destruction. <br> DISASSEMBLER <br> $\$ 11.95$ <br> Use this to look at the ROMs in your machine to see what makes BASIC tick Reconstruct the assembler source code of machine language programs to understand how they work. Our disassembler outputs unique suffixes which identify the addressing mode being used, no other program has this! <br> SUPER! BIORHYTHMS <br> A sophisticated biorhythm program with many unique features. <br> $\$ 14.95$

## SUPER EXPANSION BOARD <br> GAMING DISPLAYS <br> HI-RES PLOTTING <br> CUSTOM CHARACTERS <br> CUSTOM CHARA




## SEB-1 Assembled, Tested, W/5k RAM—\$249.00 Kit \$139.00 Bare Board \$59.00, SEB 2/3/4

User configurabe Af or composite video atiput. Prices on request - Up to eight colors. - 6K display RAM.

- An eight bit parallel port w/handshake. - Two sixteen bit timers/counters. The following expansion boards for the C2/C4/C8 series computers are available SEB-2 Color graphics/floppy controller. Same graphics capabilities as theSEB-1and a soft.ware/hardware compatible floppy controller. SEB-3 80X24 video display generator/iloppy controlier. SEB-4 48K RAM expansion board.

Coming soon
ADVENTURE: VOLCANO OF KANTHOR .... \$29.95
Simply the largest adventure anywhere for OSI! Requires 32K and one disk drive. Over 150 rooms! Magic, monsters, and the evil Klopsiwel await you. Sure to keep you amused for a LONG time.

## VIDEO GAMES 4

$\$ 14.95$
Invaders from Orion (R). Three fantastic, fast, real time invaders games, in machine language, of course. A simple invaders game, an invaders for two, and the most fantastic invasion game yet awaits you.

Ohio Scientific designed to connect to user with the following capabilities
Eleven software selectable display modes-from a $32 \times 16$ alphanumeric to a
an, a ROM chip to support the SEB. modifled Apple software. Write for prices.
Write for FREE catalog
(For International requests, please supply 2 oz postage)

# Step and Trace for C1P 

## This article presents a single step trace for BASIC programs.

## M. Piot

36 r R.Poulin
14200 Herouville, France
Type RUN, press RETURN: nothing occurs! Is it the BIGBUG?

No! Press $S$ and the first instruction is executed, press $S$ again and the next instruction is executed, press T and the number of the line embedding the last executed instruction is displayed. Press U and the third instruction is executed and the number of the line is displayed. Press CTRI C and you can ask the computer for the value of a variable. Are you dreaming? No, you just use the 40 byte program in listing 1.

Since I believe a true computerist must never run a program before he has tried to understand how it works, here are some explanations for those of you not experienced enough with the routines in ROM (interpreter and
monitor) monitor).

Though the monitor and the interpreter are in ROM, they sometimes jump briefly in RAM lat 0001, 0003, $0071,00 \mathrm{~A} 1,00 \mathrm{~A} 2,00 \mathrm{BC}, 00 \mathrm{C} 2,0207$, 020 A for the interpreter and $0000,00 \mathrm{FE}$, $0218,021 \mathrm{~A}, 021 \mathrm{C}, 021 \mathrm{E}, 0220$ for the monitor). The five last addresses (named VECTORS) are particularly interesting. Let me show you how they work with an example - the one concerning 021A.

Every time BASIC wants to output a character to the screen, it executes the following instruction:

```
20 EE FF
 (You can see one at
 A8F4-A8F5-A8F6)
```

This means jump to the routine beginning at FFEE (not EEFF), execute it and then come back.

Let's look at FFEE (in the monitor); there you find

6C 1A 02
which means jump to the routine whose address is stored in 021A-021B.

At 021A (in RAM) you find 69FF stored there by the monitor every time the BREAK key is pressed. What is FF69 (not 69FF? It is the beginning of the video output routine which ends with a 60 at FF8A. This 60 means go back to the instruction following 20 EE FF .

You may wonder why Richard W. WEILAND (the next time you "cold start" your machine, answer A to the question "MEMORY SIZE?"!! didn't write 2069 FF at A8F4. It is to allow you to eventually change the normal process by changing the address in 021A-021B. For example, change 69FF to 6CFF and you'll suppress the video output. 0207 is used every time BASIC asks for a character (from the keyboard or the cassette) through 20 EB FF. 021E is used 20 F 4 FF , and 0220 asks for SAVE through 20 F 4 FF , and 0220 is used when BASIC asks for LOAD through 20 F7 FF.

Every time an instruction has been executed, BASIC jumps to the address stored at $021 \mathrm{C}-021 \mathrm{D}$ through 20 Fl FF . This address is normally FF9B, the beginning of the CTRL $C$ routine. This is the heart of the program.

I have changed FF9B for 0222 where I have stored a program which is executed after every instruction of the BASIC program. Four commands are recognized:
S executes the next instruction
T displays the number of the line
U executes one instruction and displays the number of the line
CTRL C works as usual and allows you to ask the computer for the value of a variable (or more) by typing

PRINT $X$ or PRINT $X ; Y$
(for example)
in the immediate mode.
After a CTRL C, you may re-enter my program by pressing $S$, typing CONT, and pressing RETURN. This jumps to two routines in ROM: one beginning at FD00 which gets a
character from the keyboard and stores it in the accumulator (A) of the 6502 microprocessor; one beginning at B95A which displays the number of the line.

## How to Store the Program in RAM

To store your program in RAM you may "BREAK M" your system, type 0222\%. Then enter the 40 bytes lone byte CR one byte CR etc....) and then "BREAK $W^{\prime}$ the system to run your program. You may also store those 40 bytes by "POKEing" them with the following program you run, using RUN 63992:
63991 END
63992 FOR I = 546 TO 585
63993 READ W
63994 POKE I,W
63995 NEXT
63996 DATA $32,0,253,162,105,142$,
26,2,201, $3,240,25,201,83$
63997 DATA $240,21,201,85,240,14$
63998 DATA 201,84,208,232,32,90,
185,162, 108,142,26,2,240,
63999 DATA $3,32,90,185,76,155,255$

## How to Get Into the S T U Mode

As the first line of your program (or of the portion you want to studyl, you
must use must use

## POKE 667,96: POKE 541,2: <br> POKE 540,34

POKE 541,2 and POKE 540,34 numbers in decimal) store 0222 instead of FF9B in 021C-021D. I will let you find the why of POKE 667,96! (Hint: the 96 is an RTS.

## Problems with INPUT?

When a program that is run in the T mode reaches an INPUT statement, the displaying of line numbers stops but "no?" appears on the screen. Press RETURN U, answer the INPUT request as usual and go on tracing.

This program is not only a debugging aid, it is also very helpful to understand the way the interpreter runs programs.

|  | GETCHR <br> DISPLN <br> CNTRLC <br> BRKVEC | EQU \$FD00 <br> EQU \$B95A <br> EQU \$FF9B <br> EQU \$021A |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0222 \text { 2000FD } \\ & 0225 \mathrm{~A} 269 \end{aligned}$ | START | JSR GETCHR LDX \#\$69 | CHARACTER IN A |
| 0227 8E1A02 |  | STX BRKVEC | TO SUPPRESS VIDEO OUTPUT |
| 022A C903 |  | CMP \#\$03 | IS THIS A CTRL C? |
| 022C F019 |  | BEQ RTN |  |
| 022E C953 |  | CMP 'S |  |
| 0230 F015 |  | BEQ RTN |  |
| 0232 C955 |  | CMP 'U |  |
| 0234 FOOE |  | BEQ LNDISP |  |
| 0236 C954 |  | CMP 'T |  |
| 0238 D0E8 |  | BNE START |  |
| 023A 205AB9 |  | JSR DISPLN | DISPLAYS LINE NO. |
| 023D A 26 C |  | LDX \#\$6C |  |
| 023F 8E1A02 |  | STX BRKVEC | TO RESTORE VIDEO OUTPUT |
| 0242 F003 |  | BEQ RTN |  |
| 0244 205AB9 | LNDISP | JSR DISPLN | DISPLAY LINE NO. |
| 0247 4C9BFF | RTN | JMP CNTRLC | NORMAL CTRL C ROUTINE |
|  |  | END |  |

Z.FORTH IN ROM by Tom Zimmer

5 to 10 times faster than Basic. Once you use it, you'll never go back to BASIC!
source listing add
OSI FIG-FORTH True fig FORTH model for OS65D with fig editor named files, string
$\$ 75.00$
package \& much more
TINY PASCAL Operates in fig-FORTH, an exceptional value when purchased with forth.
TINY PASCAL \& documentation
FORTH \& TINY PASCAL
SPACE INVADERS $100 \%$ machine code for all systems with 64 chr . video. Full color \& sound on C2, 4P \& 8P systems. The fastest arcade program available.
PROGRAMMABLE CHARACTER GENERATOR
$\$ 20.00$
use Os graph
2 Mhz. boards
PROGRAMMABLE SOUND BOARD
Complete sound system featuring the AY-3-8910 sound chip. Eare boards available.
$32 / 64$ CHARACTER VIDEO MODIFICATION
Oldest and most popular video mod. True 32 chr . C1P, or $32 / 64 \mathrm{chr}$. C4P video display.
Also adds many other options.
ROMS!!!
Augment Video Mod with our Roms. Full screen editing, print at selectable scroll, disk support and many more
features. Basic $4 \&$ Monitor
Basic 3
$\$ 49.95$
\$ 18.95
All 3 for
\$ 65.00
65D DISASSEMBLY MANUAL. by Software Consultants. First Class throughout.
A must for any 65D user.
NUMEROUS BASIC PROGRAMS, UTILITY PROGRAMS AND GAMES ALONG WITH HARDWARE PROJECTS. ALL PRICES ARE U S FUNDS. Send for our $\$ 1.50$ catalogue with free program (hardcopy) Memory Map and Auto Load Routine.

## OSI Software \& Hardware



3336 Avondale Court
Windsor, Ontario, Canada N9E 1X6 (519) 969 -2500
? 1 fla 3281 Countryside Circle
Pontiac Township, Michigan 48057
Pontiac Town
(313) $373-0468$


# An Introduction to Bit Pads 

## By Loren W. Wright

The following articles describe two microcomputer implementations of a bit pad. In the first, Peter Coyle describes how to use the 8 -bit parallel interface version |cheaper than the IEEE-488 interface version) with a PET. The hardware aspect of the article is applicable to any microcomputer with a parallel port, and the software is convertible, with few changes, to almost any 6502 machine. The second article, by Ralph Erickson, describes a program to process data through an RS-2.32 interface (AIM 65) and save the data to tape or DAIM disk.

A bit pad can be a valuable addition to your microcomputer system, but many people are unaware of what a bit pad is, and what it can do. The following article (and photo) was compiled from information supplied by Summagraphics Corporation, the manufacturer of Bit Pad One and other bit pad and digitizing products.

Essentially, a bit pad is a rectangular tablet that senses the position of an electronic stylus or a crosshair "cursor" above its surface. This information is converted to digital information and sent to the computer. The stylus, with interchangeable non-marking and marking tips, is included with Bit Pad One, but one-, four-, and thirteen-button crosshair cursors are also available.

## Operating Modes

Bit Pad One modes and sampling rate may be controlled externally under program control, or internally by switches on the logic board. The powerup mode and sampling rate are determined by the positions of the internal switch. Both the mode and sampling rate may be changed under program control from the host computer by sending the Bit Pad One either one ASCII character or eight-bit byte, depending on the resident interface. The following modes are available:

Point Mode-Depression of the stylus on the tablet, or pressing a button
on the cursor causes one $x$-, $y$-coordinate pair (sample) to be output in the appropriate format.

Stream Mode-x-, y-coordinate pairs (samples) are generated continuously at the selected sampling rate when the stylus or cursor is in the proximity of the active area of the tablet. Pressing the stylus to the tablet, or depressing a button on the cursor marks the flag character $(\mathrm{F})$ bit in the output string. This mode is typically used for CRT cursor control (cursor steering).

Switch Stream Mode-Depression of the stylus, or pressing a button on the cursor causes $x$-, $y$-coordinate pairs (samples) to be output continuously at the selected sampling rate until the stylus or button is lifted.

Bit Pad One comes in two sizes $11^{\prime \prime} \times 11^{\prime \prime}$ and $15^{\prime \prime} \times 15^{\prime \prime}$, and with three interfaces - RS-232, 8-bit parallel, and IEEE-488. Prices (at press time) range from $\$ 730$ for the 8 -bit parallel version in the $11^{\prime \prime} \times 11^{\prime \prime}$ size to $\$ 1395$
for the IEEE-488 version in the $15^{\prime \prime} \times$ $15^{\prime \prime}$ size. Also, I understand that Bit Pad One is now available with a l6-bit parallel interface, although first-hand details are not available at present. A power supply is also required - $\$ 95$ for the U.S. model.

## Applications

Applications of a bit pad are only limited by the user's imagination. Data entry can be done by checking the appropriate box on a pre-printed form laid on the tablet. To select items from the computer screen, the CRT cursor can be directed with the movement of the bit pad stylus. Patterns can be drawn on the screen using the bit pad as an electronic brush and canvas. In drafting, oftenrepeated symbols like doors and windows or NAND gates and transistors can be selected, and then positioned properly, using the stylus. In education, the process of typing in an answer can be eliminated, thus allowing the student to focus on the subject. Of course, game applications are probably the first things to come to mind.


## The ultimate $\mathbf{A P P L E}{ }^{\circ}$ copy program COPY II PLUS

## $\$ 3995$

VERSATILE - Copy II Plus copies multiple formats - DOS 3.2, 3.3, PASCAL, FORTRAN, and CPM.

FAST - Copy II Plus copies diskettes in less than 45 seconds. That's faster than most other copy programs. Written entirely in ultra fast assembly language.

Search no more for that truly versatile, fast copy program. Copy II Plus is the most advanced copy program available for the Apple II Computer. Compare capability, compare speed, compare price, then call or write to order Copy II Plus. Requires Apple II with 48 K and at least one Disk Drive.


P.O. Box 3563<br>Central Point, OR 97502<br>(503) 773-1970



## 16K MEMORY EXPANSION KIT our $\$ 29$

FOR APPLE, TRS-80 KEYBOARD, EXIDY, AND ALL OTHER 16K DYNAMIC SYSTEMS USING MK4116-3 OR EOUIVALENT DEVICES.

* 200 NSEC ACCESS, 375 NSEC CYCLE
- BURNED-IN AND FULLY

TESTED
$\star 1$ YR. PARTS REPLACEMENT
GUARANTEE

* QTY. DISCOUNTS AVAILABLE

ALL ASSEMALED BOARDS AND MEMORY CHITS CABRY A FULL ONE year merlacement wamanty


## PET Interface to Bit Pad


#### Abstract

A PET machine language sampling routine to read $x$-, $y$-coordinate data through the 8-blt parallel Interface of the Summagraphics Blt Pad. Additional Information has been supplled for hardware and software implementation on a SYM or AIM. A PET BASIC program is provided to drive the routine and write data to tape. Another reads data from tape.


Peter Coyle
Dept. of Anatomy
University of Michigan
Ann Arbor, Michigan 48109

Editor's Note: The Summagraphics Bit Pad described here is a discontinued model. Bit Pad One is the current comparable model. The main difference is that Bit Pad had a separate console, whereas Bit Pad One has all the electronics contained in the tablet unit. The hardware interface and program requirements are the same for the two models.

Mr. Coyle's original machine language sampling routine for the PET has been modified slightly by the MICRO staff to make implementation on other systems easier. Hardware connection information is summarized in table 1, and programming information is provided in table 2.

Data or instruction entry into a microcomputer via the keyboard is relatively slow. Quicker entry can be accomplished by placing a stylus over a coded string of information on a chart. A sensor detects the spatial position of the stylus, digitizes, and then transfers the $x$ - and $y$-coordinate values to a computer for decoding. Coordinate values can code variables such as points in space, computer instructions, names, titles, parts, recipes, grades, costs records, and many others. A nearly-endless list may be generated.


Information compiled by MICRO staff.

| Table 2: Parallel Port Addressing |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Address <br> Description | Program Symbol | PET | SYM | AIM |
| Output register A, with handshaking | ORAHS | $\begin{gathered} \$ E 841 \\ (59457) \end{gathered}$ | $\begin{gathered} \$ A 801 \\ \{43009\} \end{gathered}$ | $\begin{gathered} \$ A 001 \\ (40961) \end{gathered}$ |
| Data direction register, Port A | DDRA | $\begin{gathered} \$ E 843 \\ {[59459]} \end{gathered}$ | $\begin{aligned} & \$ A 803 \\ & (43011) \end{aligned}$ | $\begin{gathered} \$ \text { A003 } \\ (40963) \end{gathered}$ |
| Peripheral control register | PCR | $\begin{gathered} \$ \mathrm{EP4C} \\ \|59468\| \end{gathered}$ | $\begin{aligned} & \$ A 80 C \\ & (43020) \end{aligned}$ | $\begin{aligned} & \$ \mathrm{AOOCC} \\ & (40972) \end{aligned}$ |
| Interrupt flag register | IFR | $\begin{aligned} & \text { \$E84D } \\ & \text { (59469) } \end{aligned}$ | $\begin{aligned} & \text { \$A80D } \\ & (43021) \end{aligned}$ | $\begin{aligned} & \$ \text { A00D } \\ & (40973) \end{aligned}$ |
| Output register A, without handshaking | ORANHS | $\begin{aligned} & \$ \mathrm{E} 84 \mathrm{~F} \\ & (59471) \end{aligned}$ | $\begin{aligned} & \text { \$A80F } \\ & (43023) \end{aligned}$ | $\begin{aligned} & \text { \$A00F } \\ & (40975) \end{aligned}$ |

Information compiled by MICRO staff.

A two－dimensional coordinate system offers flexibility for many prob－ lems and the mapping of two variables， each on a different spatial axis．The Summagraphics Bit Pad，a digitizer for entering two－coordinate information in－ to a computer，was interfaced to the 16 K Commodore PET parallel user port． This article gives the hardware interface and presents software developed for suc－ cessful interdevice communications．

## Hardware

The Bit Pad consists of several system elements．There is an 11 －inch square pad with magnetostrictive wires on a substrate beneath the surface．A strain wave is propagated along all wires simultaneously．On the pad surface，a moveable stylus or cursor senses the passing strain wave．Delay between in－ itiation and sense time is used to code $x$－ and $y$－coordinate positions of the stylus． The active area of the pad has about 8 million resolvable points with a spatial resolution of about 0.1 millimeter．A console cabinet houses the controller card，serial TTL line and 8 －bit parallel port with handshake line connectors． Power supply is self－contained and an additional purchase．Data collection modes and digitizing rates can be specified via console cabinet switches or implemented through host processor control．The developed software does not utilize host processor control of col－ lection modes nor digitizing rates．

Figure 1 indicates the wired connec－ tions and handshake signal names．No additional hardware logic elements were required for the interface．The Bit Pad has three handshake lines but there are only two on the PET prarallel user port． The problem is easily solved for only bits 0－5 of the byte convey coordinate data．Bit 7 of the parallel user port could therefore be used as the third handshake line（BYTE RECEIVED）．The sampling routine keeps track of the byte number． One Cinch 251－12－30－160 board edge connector for the PET，three feet of 12 conductor ribbon cable，and the includ－ ed Bit Pad data bus connector were utilized in making the hardware link．

## Data and Handshake Lines

For each digitized point，five 8－bit bytes（words）of data are put on Bit Pad even－numbered lines $8-22$ inclusively． Bits of the first transmitted word in－ dicate the status of flag buttons on the optional cursor．These bits can be used to control program or computer activities，but the developed software discards the first byte．The second word bits $0-5$ are less significant for the $x$－ coordinate，while byte three bits $0-5$ are

## Listing 1

```
500 REM絭洙PROG DIGITIZE
510 REM素㴪BY PETER COY'LE
515 REM沙米WRITTEN FOR 16K OR LARGER
520 REM****LORD EIT PAD SAMPLING ROUTINE
530 REM***LORD ELAHK TRPE TO STORE }<\mathrm{ K FND Y YRLUES
540 REM****DATA STORE 1280日 DEC. 3200HEK
545 REM
554 POKE 52.255: POKE 53,23: CLR: PROTECT MEMOR'T FROM BASIC
555 REM OLD ROMS--POKE 134.255: POKE 135.23
560 POKE 893,50: POKE 897,00: REM INITIALIZE DATA STORE BASE
570 TE=0: REIH SET TFPE WRITE FLRG TO ZERO
580 PRINT"J": REM CLEAR SCREEN
S9Q PRINT"INPUT " SAMPLES": INPUT N: N=H**4: REM 4 BYTES,PPOINT
GQ0 R%=INT(N;25G): REM COMPUTE HI ORDER BYTE OF N
610 B%=INT(N-\langle25E*A%>): REM COMPUTE LO}\mathrm{ BYTE OF W
G2Q POKE 828,BK: REM STORE LO H IN SAMPLING ROUTINE LOC $OBSC
63a POKE 829,AF: REM STORE HI N IN SAMPLING ROUTINE LOC $033D
640 PRINT"START SAMPLIHG DRTA"
650 SYS(83R): REM TRANSFER CONTROL TO SAMPLING ROUTINE
669 A=PEEK(893): REM FETCH BRSE VRLUE
670 B=PEEK(B26): REM FETCH COUHTER
680 N=<(A-5日)*206+B) : REM COMPUTE # PTS
690 GOSUB860: REM FETCH DATR POINTS
?OQ FRINT"IF DATA TO RE STORED OH TAPE, TYPE:"
710 PRINT"GOTO 730": REM PRINT ON SCREEN
P20 STOP: REM WAIT FOR INSTRUKTION
730 GOSUB 750
740 END
```



```
760 TE=1: REM SET FLAG EQUIGL TO ONE
70 PRINT"#": REM CLEAR SCREEN
780 PRIHT"ENTER EXPERIMENT NUMEER", INPUT ES
790 PRIHT"ENTER R , L HEMISPHERE": INPLIT H*
8@0 PRINT"ENTER NUMBER OF }x,Y\mathrm{ POINTS": INPUT HS
81@ OPEN1,1,1,E$+H$: REM OPEN AND NAME FILE
820 PRINT#1,STR草(N);",",E$;","H$
830 GOSUB 8G0: REM FETCH X RND Y RND WRITE TO TAPE RND SCREEN
840 CLOSE 1
850 RETLIRN
860 REM累嫁SUBROUTINE TO RETURN X AND Y
870 PRINT" I"," 'x"," Y": REM PRINT SCREEN COLUMN HERDERS
880 PRINT
890 FOR I=0 TO N-4 STEP 4
900 A\approxPEEK(12800+I) :B=PEEK (12800+I+1): REM GET X LO RND HI BUTES
910 X=<B#G4>+A: REM SHIFT X HI BITS & COHBINE WITH LO OHES
920 A=PEEK<12800+I+2): B=PEEK(12800+I+3): REM GET Y LO RND HI BYTES
930 Y=<B*64)+A: REM SHIFT Y HI BITS & COMBINE WITH LO OHES
940 IF TE=0 THEN 960: REM BYPRSS WRITINO TO TRPE IF FLRGO
950 PRINT*1,X;",",Y: REM WRITE TO TAPE
Sge PRITIT,4+1,X,4, REM PRINT ON SCRENM
```



```
980 NEXT I
990 RETURN
```


## Listing 2




530 REM
560 DIM $\times(200), 4(200): R E M$ DIM ARRAYS
570 PRINT＂J＂：REM CLEAR SCREEN
580 PRINT＂ENTER EXPERIMENT MLMAER＂：INPUT EF：REM EHTER FILENAME PRRT 590 PRINT＂ENTER R，L HEMISFHERE＂：INPUT H\＄：REM EHTER FILENAME FRRT 690 PRINT＂LOADING IN DATA＂
610 OPEN $1.1,0, E \$+H$ ：REM OPEN FILE
620 INPUT\＃1，N，E\＄．H\＄：REM READ FROM TAPE INTO FILE
630 N＝H／4：REM $N=$ NUMEER OF SAMPLE FOINTS
640 PRINT＂I＂，＂X＂，＂Y＂：REM PRINT COLUMN HERDERS
650 FOR I＝1 TO N
660 IHPUT\＃1，X（I），Y（I）：REM READ IN DATA
670 PRINT I $\mathrm{M}(\mathrm{I}), Y(I)$ ：REM PRINT QATR OH SCREEN
680 NEXT I
690 CLOSE is REM CLOSE FILE
子ad END

more significant. The $y$-coordinate value is coded in bits $0-5$ of words four and five, with the more significant bits in word five.

## Software

Listing 1 is the program which defines (BASIC line 550) the top of RAM available to BASIC but above which the sampling routine stores coordinate values. As given, there is space for about 600 points for the 16 K machine. On return (660) from the sampling routine, the Hi and Lo order data point bytes are combined (910 and 930) into a floating point number and displayed. Then the program requests input (700) if the data is to be written onto tape. Listing 2 reads stored data from tape.

For the sampling routine, Summagraphics provided a flow diagram of handshake signals that are required for any processor. An initial subroutine written in BASIC sampled points at about 1 sample/second. This was much too slow for our sampling needs. A 6502 Assembly Level Language version was written that avoids use of zero page locations which can cause problems with the new PET. The routine samples at about $64 /$ second, which is the maximum rate of the Bit Pad. The Bit Pad One is even faster.

Listing 3 is code for the routine stored in the second cassette buffer. Data values are stored, starting at hexadecimal 3200 (decimal 12800) which can easily be changed by POKEing 897 and 898 with a new base number. Because one byte cannot code a number larger than 255, the 3200 base value is incremented when the byte counter ( $Y$ register/ recycles. Consequently, when the BASIC program is run, the 3200 base is initialized each time. Software is included in the listing to drive the Huh Electronics beeper and needs no modification if the beeper is not used. We find that audio feedback during point sampling is helpful. Sampling need not continue until the entered number, N , of samples are obtained. Pressing a keyboard key stops the sampling process and causes return to the BASIC program. The number of samples obtained is computed (680) after PEEKing the values in locations 826 and 890 to determine how many times the counter recycled $(660)$, and adding the current cycle count (670). Once obtained by the above scheme, $x$ and $y$-coordinate data can be used for distance measurements, counting, position coding, or other purposes.

NCRO

## NIKROM TECHNICAL PRODUCTS PRESENTS A DIAGNOSTIC PACKAGE FOR THE APPLE II AND APPLE II + COMPUTER. "THE BRAIN SURGEON"

Apple Computer Co. has provided you with the best equipment available to date. The Diagnostic's Package was designed to check every major area of your computer, detect errors, and report any malfunctions. The Brain Surgeon will put your system through exhaustive, thorough procedures, testing and reporting all findings. The Tests inctude:

- motherboand rom test - APPLESOFT HOM CARD TEST
- integer rom caro test
- motmergoaro ham tests
- disk drive speed calieration
- disk drive maintenance
- DC HAYES MICHONODEM II TEST
(HARDWARE A EPROM)
- MONITOR a MODULATOA ROUTINES
- MONITOR SKEWING TESTS
- monitor test pattern
- monitor text page test

The Broin Surgeon allows you to be confident of your system. This is as critical as the operating system itself. You must depend on your computer $100 \%$ of it's running time. The Braln Surgeon will monitor and help maintain absolute peak penformance.
Supplied on diskette with complete occumantation and mainterance outco.
PRICE: \$19.95 REGUIRES: ABK, FP in ROM 1 Disk Drve, DOS 3.2 or 3.3
en Nikrom Technical Products
Order Tollfrow Anytme
Master Charge a visa users call: 1 $1800-8352246$
Kansas Residenis call: Kansas feosidenis call:

- MONITOR \& TV YOKE ALIGNMENT - LO-RES COLOR TESTS - hi. PES COLOR TESTS - Ranoom itl.Res generator - speaker function tests - souare wave modulation - PADDLE \& SPEAKER TEST PadDLE \& button test - padole stablity internal maintenance general maintenance - ON board "Help"


# YOUR COMPUTER <br> IS A <br> TYPESETTER 

Send tape or disk with text for your book or other manuscript.

We will process directly on our typesetter.

## VERY LOW COST

 for details, contact:
## Publisher

Horning's Mills, Ontario LON 1J0 Canada

Describe your computer, wordprocessor, type of manuscript, etc.


## THE INSPECTOR

These utilities enable the user to examine data both in the Apple's memory and on disks. Simple commands allow scanning through RAM and ROM memory as well as reading, displaying and changing data on disk.

Read and rewrite sections of Random Access files. Reconstruct a blown VTOC. Weed out unwanted control characters in CATALOG listings. UnDELETE deleted files or programs. Repair files that have erroneous data. All without being under program control. and more.....

You may transfer sectors between disks. This allows you to transfer DOS from one disk to another thereby saving a blown disk when all that's blown is DOS itself; or to restore a portion of a blown disk from its backup disk.
Its unique NIBBLE read routine provides a Hi -Res graphical representation of the data on any track allowing you to immediately ascertain whether your disk is 13 sector or 16 sector. Get an 1/O error...is it because you have the wrong DOS up? is it because of a bad address field? or a bad data field? or because a track was erased? This will allow you to tell in an instant without blowing away any program in memory.

## APPLE DISK \& MEMORY UTILITY

\author{

- Repairs Blown Disks <br> - Reads Nibbles <br> - Maps Disk Space <br> - Searches Disks
}
- Searches Memory
- Edits Disk Sectors
- Outputs Screen to Printer
- Displays Memory In HEX/ASCII

The INSPECTOR even lets you search through an entire disk or through on-board memory for the appearance of a string. Now you can easily add lower case to your programs (with LCA).

Do you want to add so-called illegal line numbers into your program? or have several of the same line numbers in a program (like the professional programmers do)? or input unavailable commands (like HIMEM to Integer Basic)? or put quotation marks into PRINT statements? Here's the easy way to do them all!

## AND MORE

The INSPECTOR provides a USER exit that will interface your own subroutines with those of the INSPECTOR itself. For example, just put a screen dump routine (sample included in documentation) at HEX 0300 and press CTRL-Z. The contents of the screen page will print to your printer.

## ROM RESIDENT ROUTINES

The INSPECTOR utilities come on an easily installed EPROM. This makes them always available for instant use. No need to load a disk and run a program.

## FULLY DOCUMENTED

Unlike other software of its kind, The INSPECTOR comes with an EASY to understand manual and reference card. Examples and graphics help even the uninitiated use the power of these utilities. And furthermore, we offer the kind of personal service which you have never experienced from a software vendor before.

See your LOCAL DEALER OR
Mastercard or Visa users call TOLL FREE 1-800-835-2246. Kansas residents call $1-800$ -$362-2421$. Or send $\$ 49.95$. Ilinois residents add $\$ 3$ sales tax

SYSTEM REQUIREMENTS
All Apple II configurations that have access to integer Basic (either in ROM or RAM) will support The INSPECTOR. Just place the chip in empty socket D8 either on the mother board or in an Integer firmware card. Apple II + systems with RAM expansion boards or language systems will receive the INSPECTOR on disk to merge and load with INTBASIC.

And...if you have an Apple II + , without either RAM or ROM access to Integer Basic, you will still be able to use The INSPECTOR, because we are making available 16k RAM expansion boards at a very affordabie price. Not only will you be able to use The INSPECTOR, but you will also have access to integer Basic and other languages. These boards normally retail for $\$ 195.00$. Our price for BOTH the INSPECTOR and our 16k RAM board is $\$ 195.00$, a savings of $\$ 49.95$ over the price of purchasing both separately.

Another Quality Product from
Omega Software Products, Inc 222 S. Riverside Plaza, Chicago, IL 60606 Phone (312) 648-1944
© 1981 Omega Software Products, Inc Apple is a registered trademark of Apple Computer, Inc

# Bit Pad Routines for AIM 65 


#### Abstract

An assembly language program to Interface AIM 65 BASIC to a digitizer (Bit Pad One) is described. The $x$-, y-coordInates of points on a photograph or chart can be stored In a BASIC array, simply by placing a stylus, or the crosshalr of a cursor on the point, and closing a switch. Routines are also included to save and load BASIC arrays on cassette tape or disk (DAIM). These routines are called by the BASIC USR(M) command, with a single POKEd entry point, and W to Indicate the desired routine.


Ralph O. Erickson
Department of Biology
University of Pennsylvania
Philadelphia, Pennsylvania 19104
The Rockwell AIM 65 is well designed for many applications in the laboratory. An important class of applications is undoubtedly the acquisition of data, either from instruments, such as a spectrophotometer (Saltero, R., 1980), or from a digitizer, as described in this article. With the prograrns listed here, you can log the $x$ - and $y$-coordinates of a point on a photograph, drawing, or chart, mounted on the platen of the digitizer. This is done by placing the crosshair of a cursor on the point and pressing a button, or by depressing a stylus. The $x$-, $y$-values can be stored in BASIC arrays. In addition, you can save arrays as data files on cassette tape, or floppy disk, and load the saved data files into BASIC arrays.

The first routine in the source listing (2) is written for use with the Summagraphics Bit Pad One. It can be called by a BASIC program via the USR(0) function. My Bit Pad is equipped with a RS-232 interface, and its output (pin 2 ) connects to the serial input pin of the application connector (J1-Y) of the AIM. (Other Bit Pad models are available with 8 -bit parallel, or IEEE-488 output interface.) The AIM TTY-KB switch must be left in KB position. Of the several
options described in the Bit Pad User's Manual, I selected the point mode of transmission, frather than stream, switched stream, or program control mode), set the baud rate at 1200, and selected binary data format, (rather than ASCII data format). In this mode of operation, the Bit Pad transmits one $x$-, -coordinate pair to the AIM as a sequence of 5 bytes, each time the stylus is depressed, or a button is pressed on the cursor. The first byte of the sequence is identified by bit 6 being set; in the next 4 bytes, bit 6 is clear. In addition, bit 2 of the first byte is set when the stylus is depressed or the button is pressed.

When the first byte, $\$ 44$, is detected, the next 4 bytes are stored. They contain the binary-coded $x$-, $y$-coordinates of a point to 12 -bit accuracy, and 0.005 -inch resolution. Their format is changed to BASIC integer format, and they are stored indirectly in 4 bytes which can be accessed by BASIC. To make this possible, integer variables, X1\%, Y1\%, are defined at the beginning of the BASIC program, so that they are defined at the beginning of the BASIC variable area the address of which is at $\$ 0075$. BASIC can then re-assign them to other variables or array(s), where they are accessible for printing, saving as data

| Listing 1 |  |
| :---: | :---: |
| 1 REM -BIT PAD INPUT \& BASIC DATA FILES |  |
| 2 REM -REM POSITION TAPE; TOGGLE<1>OFF; \& SET "RECORD" TO SAVE DATA 3 REM -OR "PLAY" TO LOAD DATA |  |
|  |  |
| 4 REM -TO SAVE EXISTING DATA, USE DIRECT "GOTO 60"; "RUN" DELETES ARRAY S!! |  |
| 5 X1\% $=0: Y 1 \%=0:$ REM INITLALIZE INTEGER VARIABLES |  |
| 6 POKE 4,0: POKE 5,63: REM -S/R AT \$3F00 |  |
| 10 INPUT "NO. OF POINTS";N: DIM X\% ( $1, \mathrm{~N}-1$ ) |  |
| 20 INPUT "DIGITIZE (Y,N)";AS: IF AS $=$ "N" THEN 60 |  |
| 30 PRINT " $0^{\prime \prime}$ : REM -INPUT DATA FROM BIT PAD |  |
| 40 FOR J = 0 TO N - $1: B P=\operatorname{USR}(0): \mathrm{X} \mathrm{\%}(0, \mathrm{~J})=\mathrm{Xl}$ \% $: \mathrm{X} \mathrm{\%}(1, \mathrm{~J})=\mathrm{Y} 1 \%$ |  |
| 50 PRINT J;X1\%;Y1\%: NEXT |  |
| 60 INPUT "TAPE READY ( $\mathrm{Y}, \mathrm{N}$ ) ${ }^{\text {\% }}$ AS: IF AS $=$ " $\mathrm{N}^{\prime \prime}$ THEN MN $=$ USR (5) |  |
| 70 INPUT "SAVE (S)OR LQAD (L)";AS: IF A\$ = "L" THEN 110 |  |
| 80 WO = . USR (1): REM -OPEN WRITE FILE |  |
|  |  |
| 100 WC = USR (2):MN = USR (5) : REM -CLOSE WRITE EILE |  |
| 110 RO = USR (3): REM -OPEN READ FILE |  |
| 120 FOR J = 0 TO $\mathrm{N}-1$ : INPUT X\% $(0, \mathrm{~J})$, X\% $(1, \mathrm{~J})$ : NEXT |  |
| 130 RC = USR (4) : REM -CLOSE READ |  |
| 140 INPUT "VERIFY LOAD (Y,N)";AS: IF AS = "N" THEN END |  |
| 150 FOR J = 0 TO N - 1: PRINT J; $\mathrm{Xz}(0, \mathrm{~J})$; X\% $(1, \mathrm{~J}):$ NEXT |  |
| Instructions for listing $2 . \quad$. |  |
| BPSAV-ROUIINES CALLED BY AIM BASIC <br> USR ( ) TO: | PAD |
| -GET X, Y-COORDINATE PAIRS FROM BIT | FORMAT OF IST BYTE: 01000100 (FLAGS] |
| PAD DIGITZER | WHEN THIS IS DETECTED, NEXT 4 BY |
| CASSETTE TAPE, OR DISK | ARE STORED AT DATA, X : |
| -LOAD BASIC DATA FILES FROM CASSETTE | 00 XX XXXX (0-5) |
| TAPE OR DISK INTO | 00XX XXXX (6-11) |
| BASIC ARRAYS | 00YY YYYY (0-5) |
| BIT PAD IS SET FOR: | 00YY YYYY (6-11) |
| -POINT MODE OUTPUT | THEIR FORMAT IS CHANGED: |
| -BAUD RATE $=1200$ (RS-232) | XXXX XXXX (0-7) |
| -BINARY DATA FORMAT | 0000 XXXX (8-11) |
|  | YYYY YYYY (0-7) 0000 YYYY 8 -11) |
| SUBROUTINES | 0000 YYYY (8-11) |

## Llsting 1

```
REM -BIT PAD INPUT & BASIC DATA FILES
REM --REM POSITION TAPE; TOGGLE<l>OFF; & SET "RECORD" TO SAVE DATA
REM -OR "PLAY" TO LOAD DATA
 EM -TO SAVE EXISTING DATA, USE DIRECT "GOTO 60"; "RUN" DELETES ARRAY
 X1% = 0:Y1% = 0: REM INITLALIZE INTEGER VARIABLES
 POKE 4,0: POKE 5,63: REM -S/R AT $3F00
 INPUT "NO. OF POINTS";N: DIM X% (1,N - 1)
 INPUT "DIGITIZE(Y,N)";AS: IF AS = "N" THEN 60
 PRINT " 0": REM -INPUT DATA FROM BIT PAD
 FOR J = 0 TO N - l:BP = USR (0):X% (0,J) = Xl%:X% (1,J) = Y1%
 PRINT J;X1%;Y1%: NEXT
 INPUT "TAPE READY (Y,N)";AS: IF AS = "N" THEN MN = USR (5)
 INPUT "SAVE (S)OR LQAD(L)";AS: IF A$ = "L" THEN 110
 80 WO = . USR (1): REM -OPEN WRITE FILE
 90 FOR J = 0 TO N - l: PRINT X% (0,J); 'n;'; X% (1,J): NEXT
 100 WC = USR (2):MN = USR (5): REM -CLOSE WRITE FILE
110 RO = USR (3): REM -OPEN READ FILE
120 FOR J = 0 TO N - 1: INPUT X% (0,J),X& (1,J): NEXT
130 RC = USR (4): REM -CLOSE READ
140 INPUT "VERIFY LOAD (Y,N) ";AS: IF AS = "N" THEN END
FOR J = 0 TO N - 1: PRINT J;X% (0,J);X% (1,J): NEXT
```

[^4]-USR\{0],GTDATA-GETS 5 BYTES FROM BIT
FORMAT OF IST BYTE:
01000100 (FLAGS
WHEN THIS IS DETECTED, NEXT 4 BYTES
DATA, X:
00XX XXXX ( $6-11)$
$00 Y Y$ YYYY $(0-5)$
00YY YYYY (6-11)
CHANGED:
$0000 \mathrm{XXXX}(8-11)$
YYYY YYYY (0-7)
0000 YYYY (8-11)
file(s), or for computation. In the BASIC demo program (listing 1), I have used an integer array to receive the data, because this requires only 2 bytes for each element, which is enough for the 12 -bit accuracy of the Bit Pad data.

The routines for saving and loading data, in listing 2 , have some features in common with programs which have been published (Bresson, 1980; Flynn, 1979, 1980; Kvaal, 1980). I have tried to put as much of the coding as possible into assembly language, so as to simplify BASIC programming. A BASIC program to save and/or load data, such as listing 1 , must POKE the starting address of the assembled program (\$3F00 in this case). Then the USR(W) function is used to call the routines for saving and loading, with the argument of USR|W| serving as a pointer into a jump table, where the address of the desired routine is found.

The monitor subroutines, WHEREO and WHEREI are called to open files for saving and loading. These give the standard AIM prompts for device and file name, allowing a choice to be made between tape cassette or floppy disk as the recording medium. Saving on tape is in response to $O U T=T$, loading in response to $\mathbb{N}=\mathrm{T}$. I have the Compas Microsystems DAIM disk operating system which uses the user hook, U, so that, with it, the dialog is OUT=U or $\mathbb{I N}=\mathrm{U}$. Some modification of the program might be needed with another disk system, or perhaps for paper tape.

To save an array which has been defined by a BASIC program, and which contains data, BASIC opens a write file with USR(1), executes a FOR loop containing the appropriate PRINT statement(s), then closes the file with USR(2). Loading a data file into an array is done in the same way, with USR(3) to open a read file, a FOR loop with INPUT statement(s), then USR(4) to close the file. Note that comma(s) must be inserted between variable names in the PRINT statement(s)! In using a cassette recorder, the tape must be positioned and the control keys operated manually; with the disk system, operation is, of course, much more automatic.

As Kvaal (1980) pointed out, attention must be given to the management of file size, to be sure that data files will fit into the arrays which have been defined to receive them. These routines can be used very flexibly. Data, or values computed from the data, can be saved by one program, and perhaps loaded by another program for further computation, plotting, etc. They are not limited to saving and loading integer values, as in the demo program.

AND THEY ARE MOVED TO BASIC
LOCATIONS, X1\%, Y1\%
ON RETURN TO BASIC, THESE MAY bE STORED IN ARRAY(S)
BEFORE SAVING OR LOADING: POSITION
TAPE; TOGGLE RECORDER
[1]OFF; AND PLACE IT IN RECORD OR PLAY MODE
OR INSERT DISK
-USR[1],OPENWR-SAVES PRINTER STATUS, PROMPTS FOR DEVICE AND
FILE NAME; STARTS RECORDER OR DISK basic program should
THEN(PRINT/THE DESIRED ARRAY, AND
CALL:
-USR(2),CLOSWR-CLOSES THE FILE, TURNS OFF THE RECORDER OR DISK; AND RESTORES PRINTER STATUS -USR(3),OPENRD-OPENS FILE, LIKE OPENWR
BASIC SHOULD THEN(INPUT)DATA FILE TO DESIRED ARRAY, THEN
-USR(4),CLOSRD-CLOSES FILE, LIKE CLOSWR
-USR(5),MONTR-EXIT BASIC

(Continued)

## Listing 2 (Continued)

For some purposes it would be preferable to operate a Bit Pad in stream mode rather than in point mode. This would let you trace an outline quickly while the Bit Pad transmits data continuously to the AIM. It might be preferable to use the 8-bit parallel interface for this. I have used a Bit Pad with the parallel interface (see Coyle, this issuel on a trial basis, and have a preliminary program to decode and store coordinate pairs in this mode. It would probably be best to use this as a subroutine called in a machine language program, because of speed limitations inherent in BASIC. You might want additional routines to find such things as maxima, minima, arc lengths, or areas, returning to a BASIC calling program only with such computed values, rather than with the raw data.

I want to thank my associates, Jim Laurino and Lee Peachey for advice.

## References

1. Bresson, Steve. 1980. "AIM 65 BASIC Save/Load Scheme." 6502 User Notes, No. 17, p. 20.
2. Flynn, Christopher. 1979. "Some Important BASIC Mods." 6502 User Notes, No. 15, pp. 9-12.
3. Flynn, Christopher. 1980. "AIM 65 File Operations." MICRO, No. 26, pp. 61-66.
4. Kvaal, Knut. 1980. "AIM BASIC Files." The Target. January/February 1980, pp. 2-3.
5. Saltero, Richard. 1980. "BCD Input to a 6502 Microprocessor." MICRO, No. 27, pp. 68-70.

Ralph O. Erickson is a Professor of Botany at the University of Pennsylvania, and the author of a number of articles in scientific journals. Since 1964, he has had experience with several computers in connection with his research (IBM 7040, 360, 370; CDC 3600; PDP 10; H-P 9830; Tektronix 50411. Currently, he is enthusiastic about the potential and convenience of microcomputers, such as the AIM 65, for applications in scientific research. He also uses his AIM for recreation, such as playing music.

|  | Listing 2 (Continued) |
| :---: | :---: |
| 3F8E | ;CLOSE WRITE FILE-USR(2) |
| 3F8E | ; |
| 3F8E 20FOE9 | CLOSWR JSR CRLF |
| 3F91 20FOE9 | JSR CRLF' |
| 3F94 200AE5 | JSR DUll |
| 3197 AD13A4 | LDA OUIFLG |
| 379A C955 | OPP 'v |
| 3199C | ;CLOSE DISK FILE |
| 319C FOO8 | EEQ PRESTAT |
| 3199E | ;TUFW OFF RECORDERS |
| 379E A9C5 | RECOFF LDA \$\$CF |
| 3FAO 2D00AB | AND DRB |
| 317A3 8DOOAS | EIA DRB |
| 3FA6 | ;RESTORE PRINIER STATUS |
| 317A6 AD263F | PRSTAT LDA PSTAT |
| 3779881144 | SIA PRIFLG |
| 3 HPC 60 | RIS |
| 317AD |  |
| 3FAD | FOPES READ FILP-USR(3) |
| 317AD | ; |
| 3FAD ADILA4 | OPENRD IDA PRIFLG |
| 31780 | ,SAVE PRTNIER SIATUS |
| 3/FBC ED263F | STA PSTAT |
| 31 FB 3 | ;TAPE OR DIEK? |
| $3 \mathrm{FB3} 2048 \mathrm{EP}$ | JSR heIEREI |
| $3 \mathrm{FB6}$ | PPRHNIER OFF |
| 3/596 4C893F | JMP PROFF |
| $3 \mathrm{FB9}$ | ) |
| 3.789 | ICLOSE READ FILP-USR(4) |
| 3FB9 |  |
| 3F39 AD1244 | COSRD LDA INFLG |
| 3FBC C955 | OPP 'U |
| 3FBE D003 | ENE RECL |
| 3.FCO 4C109E | JMP HIEADIP |
| $3 \mathrm{FC3} 20 \mathrm{FHE8}$ | RECL JER LL |
| 3FC6 4C9E3F | JMP RECOIF |
| $3 \mathrm{FC9}$ |  |
| $37 C 9$ | 1 REIURN TO MCNITOR-USR(5) |
| $3 F C 9$ $35 C 9$ |  |
| $3 \mathrm{FC9}$ 4CAIEl | MONFR JMP COMIN |

## MOAE SOFIURAE TOOLS FROM HES FOR YOUR 8K PTM <br> by Joy Balokristinon

HESEDIT: change 22 lines of data by merely overtyping and insert, delete, and even duplicate linesall at once! Scroll forwards or backwards by any amount - it's also easy to edit files bigger than your memory. Why code a program to maintain each file? Use HESEDIT for mailing lists, notes or prepare assembler source for HESBAL. All keys repeat. FAST written in BASIC and assembler.

ONLY \$12.95
6502 ASSEMBLER PACKAGE: HESBAL, a full-featured assembler with over 1200 bytes free ( 8 K ) \& HESEDIT; for less than $\$ 25$ ! HESBAL is THE best 8 K assembler available: it uses only 1 tape or disk, yet includes variable symbol sizes, pseudo-opcodes, over 25 error messages and more than 70 pages of documentation.

ONLY $\$ 23.95$
HESLISTER: formats multi-statement line BASIC programs, shows logic structure (disk reqd.) $\$ 9.95$

GUARANTEED to load or replaced FREE Order from your dealer or direct from us Plus $\$ 1.50$ Postage (our doc. is heavy!) Disk - Add \$3. Calif Res. - $6 \%$ Sales Tax Human Engineered Software 3748 İnglewood Blvd. Room 11 Los Angeles, Colifornia 90066
24 HOURS - (213) 398-7259
Dealer inquiries welcomed


Offer good mithe USA only.
Good through September 30, 1981.
Order any combination of available back issues.
Prices include surface shipping charges.
Regularly Special Price
$1-3$ copies
\$2.50 each
$\$ 2.00$ each
4 or more copies
2.00 each
1.25 each

Phone orders taken at MICRO headquarters for VISA and Mastercard charges. Call (617) 256-5515 (9:00 to 5:00 Eastert Time) or write

Order Department
MICRO
34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824

Issue Numbers and Dates

| Issue | Volume | Date |
| :---: | :---: | :---: |
| 7 | Volume 2 | Oct/Nov 1978 |
|  |  | Dec/Jan 1978-79 |
| 9 | " | Feb 1979 |
| 10 | ", | March ". |
| 11 | ", | April |
| 12 | " | May |
| 13 | Volume 3 | June 1979 |
| 14 | ", | July "," |
| $15{ }^{16}$ | ",' | Aug Sept |
| 17 | " | Oct " |
| 18 | " | Nov |
| 19* | " | Dec |
| 20 | ".' | Jan 1980 |
| 21 | "' | Feb ', |
| 22 | ", | March ', |
| 23 | ",' | April |
| 24 | " | May "' |
| 25 | Volume 4 | June 1980 |
| 27 | " | Aug |
| 28 | " | Sept '" |
| 29 | " | Oct |
| 30 | " | Nov |
| 31 | $\because$ | Dec |
| 32 | ", | Jan 1981, |
| 33 | " | Feb |
| 34 | " | March ", |
| 35 | " | April |
| 36 | " | May |

By Loren W. Wright

I had planned to do this column as a comparison of assemblers for 8 K PETs. However, I have determined that there is now only one widely available. Personal Software withdrew its "Assembler in BASIC" last fall, so the remaining one is the newly-released HESEDIT/ HESBAL from Human Engineered Software.

The editor (HESEDIT), which can be useful for editing files other than assembly language source, is pageoriented. Operation revolves around the command line at the top of the screen, where commands are entered that manipulate the file with respect to the 22 -line display window. Other commands, like Insert, Delete, and Replicate, are entered in the numbered (or command) portion of each line. It is very easy to make changes anywhere in the editor file. Also, a file larger than the memory available can be manipulated. Other commands save and load files on tape or disk.

The assembler (HESBAL), written in BASIC, is understandably slow. It does the job, though, and you can assemble to any available place in memory you wish |not just the second cassette buffer). Also, it is easy to make corrections at the time of assembly. All you need do is type a line (which includes the corrected source linel in the immediate mode, and you're back in business!

Probably the best part of the package is the documentation. As part of the "human engineered" concept, a full BASIC listing and program description are included. The manual suggests a number of possible changes to suit individual needs. These include accommodating a printer and assembly in the immediate mode, without a previously prepared editor source file. As a service to its customers, a copy of the public domain Micromon, an enhanced PET monitor by Bill Seiler, is included.

The slow speed of the assembler is a function of BASIC vs. machine language. A machine language assembler would have taken longer to develop, and hence would cost a lot more. It also would be difficult to change. The limited power (there are only four pseudo-ops) of the assembler is also a function of BASIC. There's only so much that can be put into a program for an 8 K PET and still leave room enough for the source, object, and symbol table.

The assembler does not print the object as it assembles - only the program counter and source line. I'm not sure whether this deficiency can be corrected with a simple patch. My review copy of the assembler mistakenly rejected the "absolute, indexed by Y" mode. 'This can be corrected with the addition of a single BASIC line, and I assume the current version includes this change.

Human Engineered Software's HESEDIT/HESBAL is a very usable editor/assembler for 8 K PETs. As the only such package currently widely available, it has filled a void in the market. Owners of larger PETs might consider this over faster, more powerful, but considerably more expensive packages. The well-documented BASIC program is easy to change to fit a number of special needs.

HESEDIT is available in three versions - one for each ROM set - for $\$ 12.95$ on tape or diskette. HESBAL, with HESEDIT, is $\$ 23.95$.

## Symbolic Assembler for HESEDIT/ HESBAL

Before I stray too far from this subject, I should mention that Emil Volcheck has made changes in Werner Kolbe's Symbolic Disassembler (MICRO 32:23) to make it compatible with HESEDIT/HESBAL. Other changes include a greater "userfriendliness" and an additional disk filing routine. He is willing to supply a cassette copy, with listing, for $\$ 5.00$ postpaid.

Emil J. Volcheck, Jr.
1046 General Allen Lane
West Chester, Pennsylvania 19380

## BASIC Upgrade Update

In my overview of BASIC upgrades (MICRO 36:62), I neglected to point out that Palo Alto ICs offers an inexpensive way to upgrade to its 4.0 Toolkit. Send them your current Toolkit ROM, with a
check for $\$ 22.45$ postpaid, and you will receive a 4.0 version for a lot less than the $\$ 39.95$ new purchase price.

Palo Alto ICs<br>2585 E. Bayshore Road<br>Palo Alto, California 94303

## Name Change

Commodore Interface is the new name for the Commodore Newsletter of the PET Users' Club. The first issue, under the editorship of Joe Devlin, includes a number of product announcements, (with a feature of the VIC-20), news items, a couple games, programming tips, and software and book reviews. Future issues will be larger, with the addition of advertising. Contributions are encouraged. The annual $\$ 15$ subscription (\$25, Canada and Mexicol covers six issues. For more information, contact:

The Editor<br>Commodore Interface<br>681 Moore Road<br>King of Prussia, Pennsylvania 19406

## Micro-Mainframe - <br> New from Commodore

Commodore has joined the 6809 bandwagon with the introduction of its Micro-Mainframe computer |also known as "Super PET" $]$. A demonstration unit was exhibited at the Commodore booth at the National Computer Conference in Chicago, May 4-7. Actually, it is an 8032 with a 6809 -based 64 K expansion board, and yes, you will be able to upgrade an existing 8032. The Micro-Mainframe will support interpreted versions of BASIC, Pascal, FORTRAN, APL, and soon, COBOL, all developed at the University of Waterloo, Waterloo, Ontario.

The Micro-Mainframe can operate as a stand-alone microcomputer, supporting all CBM/PET software and hardware (except C2N cassette), or as a development system for larger and faster mainframe computers. The 6809 board includes a standard RS-232C interface, and files are output in true ASCII, a form compatible with the mainframe computers.

The $\$ 1995$ price will include the 8032 computer, 6809 board, and software, notably the "Waterloo 6809 Assembler and Linker." Deliveries are scheduled for late 1981.

This month's journal presents the conclusion of "User-Defined Routines in UCSD Pascal" by D.R. Turnidge.

## F. PROGRAM SPECIALDEMO

This section contains a sample Pascal program which lllustrates the use of the procedures in UNIT SPECIALFEATURES. The procedures from the newly installed UNIT SPECIALFEATURES will automatically be linked into the workfile when it is run.
(*\$L CONSOLE:*)
PROGRAM SPECIALDEMO;

## USES SPECIALFEATURES;

VAR CHARNUM,XCOOR,YCOOR,COUNT, LEFT,RIGHT,TOP,BOTTOM: INTEGER; COLOR,COLOR2: COLORS;

PROCEDURE DELAY(TIME: INTEGER) ;
VAR COUNT1,COUNT2: INTEGER;
BEGIN
FOR COUNT1: $=1$ TO TIME DO
FOR COUNT2: $=1$ TO 50 DO (* WAIT A WHILE *) ; END;

PROCEDURE WHISTLE;
VAR FREQUENCY,INC: INTEGER;
BEGIN
SOUNDON; (* TURN SOUND OPTION ON *)
FREQUENCY: = 256;
FILLCOLOR(BLUE);
XCOOR: $=0 ;$ YCOOR: $=1 ;$ INC: $=1$;
REPEAT
TONE(FREQUENCY);
FREQUENCY: $=$ FREQUENCY + 2;
PLOTCOLOR(INVBLUE,XCOOR,YCOOR) ;
IF INC = 1 THEN
IF XCOOR<31 THEN
XCOOR: $=$ XCOOR + INC
ELSE BEGIN
INC: = - 1 ;
YCOOR: $=\mathrm{YCOOR+1;}$ END
ELSE
IF XCOOR $>0$ THEN
XCOOR: $=$ XCOOR + INC
ELSE BEGIN
INC: = 1;
YCOOR: $=$ YCOOR +1 ; END;
UNTIL FREQUENCY = 2048;
INC: = - 1;
REPEAT
TONE(FREQUENCY);
FREQUENCY: = FREQUENCY - 2 ;
PLOTCOLOR(BLUE,XCOOR,YCOOR) ;
IF INC = 1 THEN
IF XCOOR<31 THEN
XCOOR: $=\mathrm{XCOOR}+$ INC
ELSE BEGIN
INC: = - 1 ;
YCOOR: = YCOOR-1; END

```
 ELSE
 IF XCOOR>0 THEN
 XCOOR: = XCOOR + INC
 ELSE
 BEGIN
 INC: = 1;
 YCOOR:= YCOOR - 1;
 END;
UNTIL FREQUENCY = 256;
END;
```

```
BEGIN (* PROGRAM SPECIALDEMO *)
 INITOPTIONS; (* INITIALIZE OPTIONS *)
 CLEARGRAPHICS; (* CLEAR GRAPHICS DISPLAY *)
 CLEARCOLOR; (* CLEAR COLOR DISPLAY *)
 COLORON; (*TURN COLOR OPTION ON*)
 COLOR:= YELLOW;
 FOR CHARNUM:=0 to 47 DO
 BEGIN
 FILLGRAPHICS(CHARNUM) ;
 SCR32\times64;
 FILLCOLOR(COLOR);
 DELAY(25);
 COLOR: = SUCC(COLOR) ;
 SCR32 x 32;
 FILLCOLOR(COLOR) ;
 DELAY(25) ;
 COLOR:=SUCC(COLOR) ;
 END;
CLEARGRAPHICS;
COLOR2:=YELLOW;
REPEAT
 FILLCOLOR(COLOR2) ;
 (* DISPLAY COLOR CHECKBOARD SPIRALING OUT *)
 LEFT:=15; RIGHT:=16; BOTTOM: = 15; TOP:=16;
 REPEAT
 FOR YCOOR:= BOTTOM TO TOP DO
 BEGIN
 PLOTCOLOR(COLOR,LEFT,YCOOR) ;
 COLOR:=SUCC(COLOR) ;
 END;
 FOR XCOOR: = LEFT + 1 TO RIGHT DO
 BEGIN
 PLOTCOLOR(COLOR,XCOOR,TOP) ;
 COLOR:=SUCC(COLOR) ;
 END;
 FOR YCOOR: = TOP - 1 DOWNTO BOTTOM DO
 BEGIN
 PLOTCOLOR(COLOR,RIGHT,YCOOR) ;
 COLOR:= SUCC(COLOR) ;
 END;
 FOR XCOOR: = RIGHT - 1 DOWNTO LEFT + 1 DO
 BEGIN
 PLOTCOLOR(COLOR,XCOOR,BOTTOM) ;
 COLOR:= SUCC(COLOR) ;
 END;
 LEFT:= LEFT - 1; RIGHT:= RIGHT + 1;
 BOTTOM:= BOTTOM - 1; TOP: = TOP + 1;
 UNTIL LEFT = 2;
 (* DISPLAY GRAPHICS CHARACTERS SPIRALING IN
 LEFT:=3; RIGHT:=28; TOP:=28; BOTTOM: =3;
 CHARNUM:=0;
 REPEAT
 FOR YCOOR: = BOTTOM TO TOP DO
 BEGIN
 PLOTCHARACTER(CHARNUM,LEFT,YCOOR);
 CHARNUM:=CHARNUM + 1;
 END;
```

FOR XCOOR: = LEFT + 1 TO RIGHT DO BEGIN
有 PLOTCHARACTER(CHARNUM,XCOOR,TOP) ; CHARNUM: $=$ CHARNUM +1 ; END;
FOR YCOOR: $=$ TOP -1 DOWNTO BOTTOM DO
BEGIN
PLOTCHARACTER(CHARNUM,RIGHT,YCOOR) ;
CHARNUM: = CHARNUM +1 ;
END;
FOR XCOOR: = RIGHT - 1 DOWNTO LEFT + 1 DO BEGIN
PLOTCHARACTER(CHARNUM,XCOOR,BOTTOM) ;
CHARNUM: $=$ CHARNUM +1 ;
END;
LEFT: = LEFT + 1; RIGHT: = RIGHT -1 ;
TOP: = TOP - 1; BOTTOM: = BOTTOM +1 ;
UNTIL LEFT = 16;
DELAY(50) ;
(* ERASE GRAPHICS CHARACTERS SPIRALING OUT *)
LEFT: = 15; RIGHT: =16; BOTTOM: $=15$; TOP: $=16$;
REPEAT
FOR XCOOR: = LEFT TO RIGHT DO ERASECHARACTER(XCOOR,BOTTOM) ;
FOR YCOOR: = BOTTOM + 1 TO TOP DO ERASECHARACTER(RIGHT,YCOOR) ;
FOR XCOOR: = RIGHT - 1 DOWNTO LEFT DO ERASECHARACTER(XCOOR,TOP) ;
FOR YCOOR: =TOP - 1 DOWNTO BOTTOM + 1 DO ERASECHARACTER(LEFT,YCOOR) ;
LEFT: = LEFT $-1 ;$ RIGHT: $=$ RIGHT +1 ;
TOP: $=$ TOP + 1; BOTTOM: $=$ BOTTOM -1 ;
UNTIL LEFT $=2$;
(* ERASE COLORS SPIRALING IN *)
LEFT: = 3; RIGHT: $=28 ;$ TOP: $=28 ;$ BOTTOM: $=3$; REPEAT
FOR XCOOR: = LEFT TO RIGHT DO
I ERASECOLOR(XCOOR,BOTTOM) ;
WFOR YCOOR: = BOTTOM + 1 TO TOP DO
ERASECOLOR(RIGHT,YCOOR);
FOR XCOOR: = RIGHT - 1 DOWNTO LEFT DO ERASECOLOR (XCOOR,TOP) ;
FOR YCOOR: =TOP - 1 DOWNTO BOTTOM + 1 DO ERASECOLOR(LEFT,YCOOR) ;
LEFT: = LEFT $+1 ;$ RIGHT: $=$ RIGHT -1 ;
TOP: = TOP - 1; BOTTOM: $=$ BOTTOM +1 ;
UNTIL LEFT = 16;
COLOR2: = SUCC(SUCC(COLOR2)) ;
| COLOR: = SUCC(COLOR) ;
NTIL COLOR2 = OLIVE;
LEARGRAPHICS;
HISTLE;
NITOPTIONS; (* REINITIALIZE OPTIONS *)
ND.

## Pibliography

Bowles, Kenneth L., Beginner's Guide to the UCSD Pascal System, Peterborough: Byte Books, 1980.

Fox, David \& Waite, Mitch, Pascal Primer, Indianapolis: SAMS.

UCSD Pascal User's Manual, San Diego: Softech microsystems, 1978.

UCSD Pascal Supplemental User's Document for Use with the Ohio Scientific C3, C4 and C8, San Diego: Softech microsystems, 1980.

## Make Your

Reference Library Complete With

## The Best of MICRO

Volume 1-Contains 46 articles from October/November 1977 through August/September 1978: Apple articles (16), AIM 65 (1), KIM-1 (10), PET (9), OSI (1), SYM-1 (1), and General (8). 176 pages plus 5 tear-out reference cards (Apple, KIM, PET, and 6502), $81 / 2 \times 11$ inches, paperbound. $\$ 6.00$

Volume 2-Contains 55 articles from October/November 1978 through May 1979: Apple articles (18), AIM 65 (3), KIM-1 (6), PET (12), OSI (3), SYM-1 (4), and General (9). 224 pages, $81 / 2 \times 11$ inches, paperbound.
$\$ 8.00$
Volume 3-Contains 88 articles from June 1979 through May 1980: Apple articles (24), AIM 65 (7), KIM-1 (9), PET (15), OSI (14), SYM-1 (11), and General (8). 320 pages, $81 / 2 \times 11$ inches, paperbound.
$\$ 10.00$
Ask for The Best of MICRO at your computer store. Or, to order with VISA or Mastercard

Call TOLL-FREE 800-227-1617 Extension 564
In Callfornia 800-772-3545 Extension 564


On orders received by August 31, 1981, we pay all surface shipping charges. Massachusetts residents add 5\% sales tax.

## ALL 1-800-321-6850 TOLL FREE

34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824


# The Data Director 

easy to use Professional Software for

easy to get Professional Results

## THE DATA DIRECTOR PROJECT

The Data Director is a file management system designed for associations, direct mailers, sales \& marketing departments, recruiters, and companies that have the following profile:

- Maintain 1 to 5 files on paper or through a service bureau.
- Files are the heart of your operation (membership lists, subscription lists, sales inquiries, resumes, etc.).
- First time computer user.
- Staff characterized by high turnover.
- One major task associated with each file. Renewals, mailing labels, inquiry response, regular peak periods, etc.
The system is based upon work that began on Burroughs mainframe computers in the mid-1970s. In 1979 it was installed on OSI computers at four carefully selected alpha-test sites. These sites ranged from a church in a Gary, Indiana ghetto to the fourth-ranked graduate business college in the nation. One site, a direct mail service in Chicago, entered over 300,000 names and addresses into their system during 1979 and 1980.

Before a line of code was written, we profiled the average operator. He/she was a high school graduate, an average typist, low paid, low seniority, filling a high-turnover position. How could we work with this person?
We began by isolating the disk operating system, thereby reducing the training time and the chances of a costly mistake. The system includes a diskette formatter, file-to-file copier, directory report, file create, file rename, file delete, disk packer, and diskette copier. It traps disk errors and displays error messages in English. For example, an open disk drive prompts the message, "Drive door open. Close door and try again."
Next we developed a machine language terminal controller to simplify data entry. Displays are paged, not scrolled. Records are presented as forms automatically. If your terminal offers it, we use full and half intensity to highlight data, and cursor control keys to move around the display. We emulate all the features found on the most expensive terminals-character insert/delete, forward/reverse tab, field erase, strike-over, rubout, etc. Existing data is edited, not retyped.

The bottom line of each display is reserved as a status and command line. The operator uses a vocabulary of 30 English command words to begin each task. For example, ADD adds a new record to a file, REBUILD reconstructs an existing file into a new format. SORT sorts a file on up to 5 keys in ascending or descending order for each key.

Help is available on-line through a HELP dictionary which explains the purpose and function of each command in the vocabulary.

A 225-page manual thoroughly documents system operation, and supplies additional information to get you started properly.

## HARDWARE REQUIREMENTS

Computers: C2-0EM, C2-D, and all C3 models running under the $0 \mathrm{~S}-65 \mathrm{U}$ operating system. Data Director II and III support up to 8 users.

Terminals: All 24 by 80 cursor addressable terminals are supported. Models are selected from a menu. Multi-user systems may use different terminal models at each station.

Printers: All printers supported by the 0S-65U V1.2 DOS. Printers are selected from a menu. Line and page lengths are establish globally.

## THE DATA DIRECTOR I

Our base system is optimized for floppy disk systems. Records may contain up to 99 fields of information. Each field may contain up to 71 characters. Three field types are recognized alpha, numeric, and MM/DD/YY dates.
Existing OS-DMS compatible files can be read and maintained by the system (although the reverse is not true). We hope that OS-DMS users will consider upgrading to our system.
The REPORTS command offers an inquiry report that can be sent to the console or printer, a mailing label generator, and a conditional report writer with statistical analysis. All reports, and most of the utilities, feature a program halt on CTRL-C which allows you to halt the report and abort or continue at your leisure.

## THE DATA DIRECTOR II

Although it runs on a floppy disk system, our second system is optimized for a hard disk system. It supports up to 8 users ( 16 upon request), and was designed for files up to 20,000 records long. All version I features are incorporated.

The operating system utilities are extended to include a fast floppy dumper to back up hard disk files to floppy diskette. (Mag tape support is available separately.)

A duplicates report scans files for duplicate records. As an option, it can count all the occurrences of a duplicate field, like breaking down zipcode distributions.

The report saver captures report definitions and saves them by name. Our users have defined reports with exotic names like "In Work," "Delinquents," "Approved Loans," "Past Due," and "Prod

Work Orders." The reports offer conditional selec tion and statistical analysis.

The mailing label generator is expanded into : complete subsystem aimed at professional mailers The operator defines a label definition, giving it : name, the label's size, fields which are to appear or it, messages like "After 5 days return to:" and eve! default values like "Occupant" that are to appear i the data is missing. By selecting a definition, the operator can print on pressure sensitive labels envelopes, 3 by 5 cards, stationery, etc. Prin options include printing labels 1 to 5 across ant repeating labels up to 99,999 times.

## THE DATA DIRECTOR III

Our top of the line system is designed for ver large files, 20,000 to 100,000 records long. I incorporates all of the features of versions I and I and adds a new "linked list" storage technique.
From the operator's viewpoint, a linked fil appears to be resorted automatically whenever record is added or deleted. A file can be ordered i up to 5 different ways. For example, you coul order a membership roll by (1) zipcode, (2) zipcod and name, (3) name, (4) renewal date, and (5) se) age, and marital status.

Seek times are vastly reduced. You could fin the first occurrence of renewal date 11/01/81 in 100,000 record file in under 6 seconds, the switch keys and browse forward or backwar through the file by name.

## CONSIDER THESE FACTS

It costs money to put data into a computer. As rule of thumb, expect to pay $\$ 125$ per 100 records in labor just to gather and key in your dat: Ask any data processing professional; in less tha two years your data will be worth more than th cost of your computer and software combined. Thi is without consideration of cost savings or ac ditional income you can generate with the use 1 this information. You need the best software on th market to look after that asset.
Data Director I . . . . . . . . . . . . . . . . $\$ 999.00$
Data Director II. . . . . . . . . . . . . . $\$ 1995.00$
Data Director III . . . . . . . . . . . . $\$ 300$
Manuals . . . . . . . . . . .

## Dealer inquiries invited.

Basic Business Solutions, Inc.
831 N. 3rd Ave.
St. Charles, IL 60174
Bus. Offices (312) 377-0813
Support Center (312) 746-8736

## MR. RAINBOW

 catalog (over 100 pages). He PROMPTS you to PEEK at the latest collection of

ADO $\$ 2.00$ U.S. $\$ 10.00$ FOREIGN FOR SHIPPINC
CALIFORNIA RESIDENTS ADD 6\% SALES TAX
Don't see what you want here, then write or call today for your free catalog. We're saving one just for you.

## What's Where In The Apple?

## An Atlas to the Apple Computer

By William F. Luebbert
Adjunct Professor of Engineering, Dartmouth College
President, Computer Literacy Society

This definitive programmer's guide to the Apple II describes all the hardware and firmware characteristics important to programmers, including over 2,000 memory locations. The book expands upon the author's highly popular article published in MICRO, The 6502 Journal (15:36, August 1979).

What's Where in the Apple? allows users - frustrated by the limitations of BASIC - to take advantage of the full power of the Apple II system. The book enables users to move easily and gradually from beginning BASIC to advanced programming techniques - without making an abrupt transition from BASIC to assembly or machine language.

Approximately 192 pages, $81 / 2 \times 11$ inches, cardstock cover and Wire-O binding.
Publication: August 1981 \$19.95*
(*After Sept. 30, 1981, add $\$ 2.00$ for surface shipping) (Massachusetts residents add 5\% sales tax)

24-hour Order Service 800-227-1617 Ext. 564
In California call 800-772-3545 Ext. 564


## VISA and Mastercard Accepted



34 Chelmsford Street P.O. Box 6502

Chelmsford, MA 01824

Please take a moment to complete this questionnaire. It will help MICRO and its advertisers to serve you better. You
A. Age:
B. Occupation:
C. Professional Computer Experience:
D. Computer Courses/Training:
E. Microcomputer Hardware Level: Novice $\qquad$ Intermediate $\qquad$ Expert
F. Microcomputer Software Level: Novice Intermediate Expert $\qquad$

## Your System(s)

G. Indicate which systems you have access to on a regular basis by placing an "H" for Home, "W' for Work, " $O$ " for Other.

H. Please answer for your own personal system(s): Type:


Other Peripherals: $\qquad$
$\qquad$ Video Mónitor: $\qquad$ Modem: $\qquad$

1. Estimate dollars you will spend in coming year for hardware: \$ $\qquad$ For: $\qquad$

## Software and Appllcations

J. Estimate percent of software regularly used in each language:

Assembly: ___ \% BASIC: ___ Pascal: $\qquad$ \% FORTH: $\qquad$ \% Other: \%
K. Estimate percent of time spent in each type of application:

Games: _\% Education: $\qquad$ \% Business: $\qquad$ \% Programming: \%
$\qquad$
L. Estimate dollars you will spend in coming year for software: $\$$ $\qquad$ For: $\qquad$
M. How many hours per month do you spend in the following microcomputer activities?

Using Computer: $\qquad$ Programming: $\qquad$ Reading Computer Material: Computer Clubs: $\qquad$ Computer Store: $\qquad$ Computer Shows:
Other Computer Activities:

## You and MICRO

N. Rate the value of MICRO departments on a scale of 1 (most valuable) to 5 (least): Bibliography: $\qquad$ Club Circuit: $\qquad$ New Publications: Software Catalog: $\qquad$ Hardware Catalog: $\qquad$ PET Vet (Column): Micros in Medicine (Column): $\qquad$ Challenges (OSI Column): $\qquad$ Editorial: $\qquad$ Letterbox:
O. Rate your preference for types of articles from 1 (most valuable) to 5 (least): General Hardware: $\qquad$ Microcomputer-specific Hardware:
General Software: $\square$ Microcomputer-specific Software: $\qquad$
Applications: Tutorials: Programming Techniques:
BASIC Programs: Assembly Programs: $\qquad$ Pascal Programs:
Other:
$\qquad$
P. What kind of 6809 coverage would be most useful to you?
Q. Where did you get your current copy of MICRO? Subscription: Computer Store: $\qquad$ Library: $\qquad$ Computer Club: $\qquad$ Borrowed:
R. If you are a subscriber, when did your subscription start? $\qquad$ 1
S. If you buy MICRO at a computer store, how regularly do you buy it? Monthly: Occasionally:

Rarely:
T. What would make MICRO more valuable and/or interesting?
U. Please indicate what other microcomputer magazines you normally read:
$\mathrm{S}=$ Subscriber, $\mathrm{P}=$ Purchase regularly, $\mathrm{O}=$ Buy occasionally
BYTE _Compute! Creative Computing $\qquad$ Interface Age
KB Microcomptuing Nibble On Computing $\qquad$ Personal Computing
Others (list):
$\qquad$
$\qquad$
$\qquad$
V. Please use this space and space on back for any additional comments and/or suggestions. $\qquad$

## MICRO

34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824
USA

Classified

## Timestack - A Programmable Controller

Expand your KIM-1 into a general-purpose machine. 80-page manual documents Clock/Port/RAM/PROM Expansion Board and controller software. Subroutine library includes user interaction routines, I/O, and clock controls. Complete manual $-\$ 15.00$. SASE for more information and newsletter.

Hunter Services
P.O. Box 359

Elm Grove, Wisconsin 53122

## Atarl Game Owners

Turn your Video Game Console into a 6502 microcomputer with our MagiCard. Write programs using your keyboard controllers, with full access to Atari video capabilities. Includes 1 K bytes RAM, ROM monitor, disassembler, instruction manual, cassette interface plans. Send $\$ 49.88$ (Illinois add 6\%) to:

Computer Magic Inc.
P.O. 3383M

Fox Valley Center
Aurora, Illinois 60505

## Turnkey Medical Billing System

Interactive data entry. Automated file management. Outputs: Patient statements, Universal Claim Forms, financial reports. Customized by user-developed text files. Requires Apple, Applesoft,
printer. One disk drive manages 150 accounts; 2 drives -400 accounts. $\$ 350$ for programs and 25 pages documentation.

Jerome B. Blumenthal, M.D.
7500 E. Hellman
Rosemead, California 91770

## Used Micro Listing Service

Save time, money, mistakes, frustration. Buyer/Seller - Apple, PET, OSI, CP/M systems, floppies, printers - all equipment $\$ 300$ and up. Pay only for results. Get thorough advice and listings over the phone. Call now: $800-327-9191 \times 61$ or 703-471-0044.

Used Computer Exchange
2329 Hunters Woods Plaza
Reston, Virginia 22091

## PET/CBM Owners

Real world software at low cost. 2114 RAM adapter and 4 K Memory Expansion for "old" 8 K PETs. Write for free catalog!

Optimized Data Systems
Dept. M, Box 595
Placentia, California 92670

## Spanlsh Hangman

2,000 SPANISH words and sentences taught in a fun way on the Apple. Send for your school's free 30 -day evaluation diskette, from:

## George Earl

1302 South General McMullen
San Antonio, Texas 78237

## AIM-65 Newsletter * * Target

Target provides hardware and software information useful for AIM-65 and 6502 users. The 1979 and 1980 back issues are available for $\$ 12.00$ while a continuing subscription costs $\$ 6.00$. Just write to:

## Target

Donald Clem
Route 2
Spenserville, Ohio 45887

## C1P Extended Monitor

2 K EPROM has 14 cursor control/editing functions, improved keyboard decoding. Machine language save, load, display, modify, move, breakpoint processing and much more. For $24,32,64$ char/line. $\$ 39.95$ plus $\$ 1.00$ shipping. $\$ 1.00$ for complete information.

## Bustek

P.O. Box A

St. Charles, Missouri 63301

## Ohio Scientific C1P, C4P COLOR

Earthship has GREAT programs. C1P, C4P - Animated Lunar Lander, Catchword, real-time Scrabble, graphics designer, analytical plotter, single disk copier; C1P - animation and shape table graphics, BASIC tutor, add and multiply tutor, information processing simulation and tutor. Send for catalog.

## Earthship

17 Church Street \#28
Nutley, New Jersey 07110

# Two Pass Assembler, Disassembler, and Editor Single Load Program DOS 3.3., 40/80 Columns, for Apple II or Apple II Plus* 

A MUST FOR THE MACHINE LANGUAGE PROGRAMMER.Edit 6502* is a two pass Assembler, Disassembler and text editor for the Apple computer. It is a single load program that only occupies 7 K of memory. You can move freely between assembling and disassembling. Editing is both character and line orientated, the two pass disassemblies create editable source files. The program is so written so as to encompass combined disassemblies of 6502 Code, ASCll text, hex data and Sweet 16 code. Edit 6502 makes the user feel he has never left the environment of basic. It encompasses a large number of pseudo opcodes, allows linked assemblies, software stacking (single and multiple page) and complete control of printer (paganation and tab setting). User is free to move source, object and symbol table anywhere in memory. Requirements: 48K of RAM, and ONE DISK DRIVE. Optional use of 80 column M\&RDoard, or lower case available with Paymar Lower Case Generator.
take a look at just some of the editimg commamd featunes. Insert at line in Delete a character Insert a character Delete a line \#n List line \#n1, n2 to line \#n3 Change line \#ni to n2 "stringl" Search line \# $n$ to n " "stringl"

LJK Enterprises Inc. P.O. Box 10827 St. Louls, MO 63129 (314)846-6124 *Edit 6502 T.M. al LJK Ent. Inc.. - "Apple T.M. ol Apple Computer Inc.

LOOK AT THESE KEY BOARD FUNCTIONS: Copy to the end of line and exit: Go to the beginning of the line: abort operation: delete a character at cursor location: go to end of line: find character after cursor location: non destructive backspace: insert a character at cursor location: shift lock: shift release: forward copy: delete line number: prefix special print characters. Complete cursor control: home and clear, right, left down up. Scroll a line at a time. Never type a line number again.
All this and much much more - Send for FREE Iniormation. Introductory Price $\mathbf{\$ 5 0 . 0 0}$.



Name:
System:
Memory:
Language: Integer BASIC or Applesoft
Hardware: Apple II or Apple II Plus, Monitor, Disk II with controller, DOS 3.3, DC Hayes Micromodem, a "clock card," printer with interface card.
Description: Allows owners of Apple II and Apple II Plus desktop computers to rapidly transmit charts, graphs, correspondence, VisiCalc ${ }^{\oplus}$ reports and entire programs to other Apple computer owners. The transmissions can be sent automatically, day or night, to take advantage of late night phone rates. Maintains phone lists and sorts messages by individual user. Exchanges data with time-sharing systems and larger computers.
Price: $\quad \$ 250.00$ [suggested retail, FOB Boston)
Available:
Microcom, Inc.
89 State St.
Boston, Massachusetts 02110

Name:

## Hayes Stack Smart-

 modemSystem: Machine independent -RS-232C compatible
Language: Program controlled in any language
Hardware: Low speed modem
Description: RS-232C compatible, 300 baud data communications system for small computers. Features program control in any language, switch selectable options, full or half duplex and LED status indicators.
Price: $\quad \$ 279.00$
Available: Hayes Microcomputer Products, Inc.
5835A Peachtree Corners East
Norcross, Georgia 30092
(404) 449-8791
(Contact above address for nearest retail dealer.)

| Name: | Bytewriter-1 |
| :--- | :--- |
| Memory: | One line buffer capacity |
| Language: | BASIC |

Description: $7 \times 7$ dot matrix printer, friction feed, 80 c.p.s., 60 I.p.m., interfaces Apple, Atari and TRS-80. 80 -columns per line and double wide character set
Price: $\quad \$ 299.00$
Available: Microtek, Inc.
Name:
System:
Memory:
The PEAR System
Apple
48K
Language: Applesoft
Hardware: Dual 51/4" disk drives, DC Hayes micromodem, 32-column printer.
Description: PEAR is a multiple portfolio recordkeeping and reporting system for stockbrokers. Its unique file structure means that securities information is entered only once and can be changed on all portfolios with a single entry. PEAR includes automatic pricing from Dow Jones, matching of proceeds and cost basis by tax lot, automatic adjustment of positions for stock splits, portfolio appraisals, unrealized gain and loss, realized gain and loss, investment income reports, and a full cross reference listing of client holdings by security.
Price: $\quad \$ 500.00$ includes documentation and program disk.
Author: Gregg Wilson
Available: PEAR Systems 27 Briar Brae Road Stamford, Connecticut 06903

Name: PSSBC-A
System: AIM 65
Hardware: AIM 65 with BASIC and Assembler ROMs
Description: Power supply built to the specs for the AIM 65 including case power cord cable to computer, switch, fuse, pilot light, overvoltage protection. Price: $\quad \$ 64.95$ plus shipping ( 5 lbs )
Available: CompuTech
Box 20054
Riverside, California 92516

## Name: Micromodem 100

System: S-100 Bus Computers
Hardware: Low speed modem
Description: Direct connect data communications system for S-100 bus computers. Features 110 and 300 baud, full or half duplex and programmable auto dial and auto answer capabilities.
Price: $\quad \$ 379.00$
Available: Hayes Microcomputer Products, Inc. 5835A Peachtree Corners East
Norcross, Georgia 30092
(404) 449-8791
(Contact above address for nearest retail dealer.)

Name: MEM 4 and MEM 8
System: AIM 65
Memory: 4 K and 8 K
Description: This is a low-power memory board that is plug-compatible with the AIM 65 expansion connector and requires no motherboard or other hardware.
Price: $\quad \$ 169.00$ introductory price for MEM 8 and $\$ 109.00$ introductory price for MEM 4.
Available: System Peripherals P.O. Box 971, Dept. M

Troy, Michigan 48099

## Name: Datasouth DS180 Matrix Printer

Description: 180 cps dot matrix impact printer; bi-directional logic-seeking printing for throughput from 75-425 lines per minute; standard features include serial and parallel interfaces, top of form, perforation skipover, horizontal and vertical tabs, non-volatile format retention, expanded print and selftest. Options include graphics and APL.
Price: $\quad \$ 1595$ (OEM discounts up to $40 \%$ )
Available: Datasouth Computer Corp.
4740-A Dwight Evans Rd. Charlotte, North Carolina 28210
and our distribuors

# "NIBBLE IS TERRIFIG" (For Your Apple) 



## NBBEAE 18: The Reference for Apple computing!

NMBBLE I8: One of the Fastest Growing new Magazines in the Personal Computing Field.

NHBRLE IS: Providing Comprehensive, Useful and Instructive Programs for the Home, Small Business, and Entertainment.

NHBBLE IS: A Reference to Graphics, Games, Systems Programming Tips, Product News and Reviews, Hardware Construction Projects, and a host of other features.

NBBELE I8: A magazine suitable for both the Beginner and the Advanced Programmer.
Each issue of NIBBLE features significant new Programs of Commercial Quality. Here's what some of our Readers say:

- "Certainly the best magazine on the Apple II"
- "Programs remarkably easy to enter"
- "Stimulating and Informative; So much so that this is the first computer magazine I've subscribed to!"
_ "Impressed with the quality and content."
- "NIBBLE IS TERRIFIC!"

In coming issues. look for:
$\square$ Stocks and Commodities Charting $\square$ Assembly Language Programming ColumnPascal Programming Column $\square$ Data Base Programs for Home and BusinessPersonal Investment Analysis $\square$ Electronic Secretary for Time Management The GIZMO Business Simulation Game
And many many more!
NIBBLE is focused completely
on the Apple Computer systems.
Buy NIBBLE through your local Apple Dealer or subscribe now with the coupon below.
Try a NBBEE!


Mike Rowe
P.O. Box 6502

Chelmsford, MA 01824

## Software Catalog

Name:
System:
Memory:
Language:
Hardware:

## Biostatistics

Apple II or Apple II Plus 48 K
Applesoft BASIC
Two Disk II; Optional:
Printer and Watanabe Miplot
Description: This is a collection of programs aimed at the researcher who requires graphical representation and analysis of data. The package performs the following tests: Linear Regression, Exponential Regression, Curvilinear Regression, Data Plotting, Student $t$ Tests (paired and unpaired with calculated probability), Mann-Whitney U Test and Wilcoxon Paired Test. A significant optional feature enables the user to generate graphical output on the Watanabe Miplot plotter. The package includes both program and data disks (DOS 3.2) as well as documentation. Price: $\$ 40$

## Available: A2Devices

P.O. Box 2226

Alameda, California
94501
(415) 527-7380

| Name: | Hebrew II $^{\text {TM }}$ |
| :--- | :--- |
| System: | Apple II |
| Memory: | 48 K |
| Language: | Applesoft in ROM or |
|  | Language System |
| Hardware: | Apple II with one disk <br> drive |

Description: The first foreign language word processor for the Apple II in America. This program puts Hebrew characters on the screen from right to left (and numbers left to right in their natural order) and allows full cursor movement and character editing. Text can be printed, saved to disk, and recalled for further editing, which makes it ideal for independent student work. It is particularly useful for labeling any Apple Hi-Res page such as charts, maps, and pictures. Hebrew II can produce graph labels, press-on labels, memos, posters, and, of course, practice in learning Hebrew.

| Price: | $\$ 60$ |
| :--- | :--- |
| Available: | Aurora Systems, Inc. |
|  | 2040 E . Washington Ave. |
|  | Madison, Wisconsin |
|  | 53704 |

## Name: <br> System: Memory: Language: Hardware: <br> DOW2000 <br> Apple II <br> 32 K <br> Applesoft <br> Disk 3.3/3.2 Printer Option

Description: Stock Market Analysis will determine price projections based on a stock's BETA coefficient or Relative Strength number and the Dow Jones Average. Projections are made as you vary the DOW. (What if....) On 1 stock or entire portfolio with single scan, quick scan, or variable scan of values. Included is the booklet "The Art of Timing Your Stock's Next Move." Author in market 17 years and former registered Investment Advisor with S.E.C.

| Copies: | Just released |
| :--- | :--- |
| Price: | $\$ 29.00$ with booklet |
|  | (booklet alone $\$ 6.00$ ). |
| Author: | CIAC: Calabrese |
| Available: | BIT'N PIECES SERIES |
|  | P.O. Box 7035 |
|  | Erie, Pennsylvania 16510 |

Name: C1P Animation and Shape Table Graphics
System: OSI C1P cassette or PICO DOS
Memory: $\quad 8 \mathrm{~K}$ cassette, 20 K disk
Language: BASIC and assembler
Description: The animation package contains a BASIC program for drawing from the keyboard, without any numbers or programming, any number of single page pictures which are catalogued and POKEd into an indexed shape table. They may be saved to tape for later use. The following three assembler routines are organized by a short BASIC executive to give the user the ability to do complex high speed graphics and animations through simple BASIC programming. CLEAR: Clear or fill any portion of the screen in one page increments. PUTPIC: Call any catalogued picture to any part of the screen. FLASH: Flash any portion of the screen, or alternate between two pictures.

Price:
Author:
Available:
$\$ 22.95$ cassette, $\$ 24.95$ disk fully documented Ken Madell
Earthship
17 Church St. \#28
Nutley, New Jersey
07110

Name:
System:
Memory: $\quad 32 \mathrm{~K}$ ( 16 K for smaller version)
Hardware: PET with disk and printer
Description: A complete scoring system for bowling league secretaries. Scratch and handicap bowling leagues with up to 24 teams (smaller version handles 12 teams). Features include disk records, accuracy, and extensive editing giving the secretary complete control of the data. Provisions are included for forfeits, blinds, partial absences, snapout errors, postponements, team ties, individual ties, subs, name changes, drops, ineligibles, messages, display of secretary's lane, and lane assignments anywhere in a 98 -lane house. It is designed to be complete and yet save paper costs. The Epson option produces compacted printing saving another $25 \%$. A yearend sweeper program that runs off of the final data disk is available, as is a complete archive program that will read each week's disk record for data on each individual.
Price: $\quad$ Starts at $\$ 40.00$
Available: Harry H. Briley
P.O. Box 2913

Livermore, California
94550

| Name: | 5 Great Games! |
| :---: | :---: |
| System: | Apple II |
| Memory: | 48K |
| Language: | Applesoft, Machine |
| Hardware: | Apple II Plus, Disk II |
| Description: | Includes Animal Bingo, |
| Jungle Safa | ri, Space Defense, Sky |
| Watch, and | the unforgettable Air Traf- |
| c Control | er. These are our |
| pular gam | es - every one is Hi |
| hock full | f shape tables, and full of |
| eat machi | ne language sound effects |
| - some like | you've never heard before. |
| There's eno | ugh action and intrigue to |
| keep you go | ing for months! |
| Copies: | Many |
| Price: | $\$ 29.95$ (or $\$ 9.95$ for any one of the above games). |
|  | Includes game cards, two |
|  | disks, instructions. |
| Available: | Avant-Garde Creations |
|  | P.O. Box 30161 |
|  | Dept. MCC |
|  | Eugene, Oregon 97403 |


| Name: | Mini-Count |
| :---: | :---: |
| System: | PET/CBM |
| Memory: | 8K |
| Language: | BASIC and machine code |
| Hardware: | Connector and clip leads |
| Descriptio | : Uses the PET/CBM |
| paralle. us and time | port to measure frequency intervals. Can also count |
| pulses. M | ny sophisticated features |
| such as au | to-ranging, averaging, and |
| external sto | /start signals. Frequency |
| limit of 17 | Khz and pulse widths of 45 |
| usec to 65. | 3 msec . |
| Price: | $\$ 19.95$ includes cassette |
| Author: | Ralph D. Goff |
| Available: | Optimized Data Systems |
|  | P.O. Box 595 |
|  | Placentia, California |
|  | 92670 |


| Name: | The Ultimate Catalog |
| :--- | :--- |
| System: | Apple II/Apple II Plus |
| Memory: | Minimum 20K <br>  <br> (ROM Applesoft) <br> Language: |
|  | Applesoft and machine |
| Hardware: | RWTS |
| Apple II, Disk II, DOS 3.2 |  |

Description: Now you can format your directory to appear any way you wish. Block similar programs together; write headers mid-directory; separate by sections. This 5 K , menu-driven utility is easy to use and performs the following functions: Alphabetize any portion or all of directory, move any file, exchange any two files, highlight or remove highlighting from any file name, insert blank line(s), delete any file, lock or unlock all files, delete or restore all files.

| Price: | $\$ 6.50$ for listing and <br> instructions |
| :--- | :--- |
| Author: | Larry Abrams |
| Available: | Aries Software |
|  | P.O. Box 58 |
|  | Los Altos, California |
|  | 94022 |


| Name: | Apple Alarm |
| :---: | :---: |
| System: | Apple II with Firmware |
|  | Card or Apple II Plus |
| Memory: | 48K RAM |
| Language: | Applesoft DOS 3.2, 3.3 |
| Hardware: | Disk Drive, Paddles, Sensors (switches) |
| Descriptio | Apple Alarm is a progr |
| at conv | As your computer into |
| entry, k | ng track of fire, smok |
| trusion, | tion, moisture and other |
| on/off sen | ry inputs. Attach your |
| oor mat | or-window switch, fire |

alarm or other sensor to the paddle buttons and your Apple will sound an alarm or quietly keep time from the moment triggered. Have your Apple guard your home, tell you when the kids came home...or left. Know when your night janitor arrived.
Copies: Just released
Price: $\quad \$ 20.00$ includes 12 -page manual
Author: Andent Inc.
Available: Andent Inc.

## 1000 North Ave.

Waukegan, Illinois 60085
Name: COMCON Disk
System: OSI Challenger (C2 and C3 series)
Memory: $\quad 32 \mathrm{~K}$ or 48 K
Language: BASIC/6502 Assembly under OS65D
Hardware: Disk drive, modem, CRT, optional printer; (video and serial versions available).
Description: A telecommunications interface program providing smart terminal facilities via modem. Useful for transferring software or data files and saving them on disks. Allows communication with mainframes or other micros, uploading and downloading and printing. Control key initiation of LOGON messages. User-controlled tailoring of protocol and system characteristics, including port and output device, half or full duplex, parity, checksums, baud rate, and line control.
Price: $\quad \$ 45.00$ on $8^{\prime \prime}$ disk postpaid. Includes documentation (specify 32 K or 48 K version, and whether serial or video). Author: Sid Brounstein Available: Responsive Computer Technology, Inc. P.O. Box 719

## Silver Spring, Maryland

 20901| Name: | Laser Wa |
| :---: | :---: |
| System: | OSI CLP or Superboard |
| Memory: | 8K |
| Description: Maneuver your space craft |  |
| to line enemy fighters in your cross- |  |
| hairs and destroy them with your |  |
| lasers. A fast action arcade-type game |  |
| with machine language graphics for one |  |
| player. |  |
| Price: | \$7.95 ppd. |
| Author: | Brian and Craig Zupke |
| Available: | BC Software |
|  | 9425 Victoria Drive |
|  | Upper Marlboro, |
|  | Maryland 20870 |

Name: Perception 3.0
System: Apple II or Apple II Plus Memory: 48 K
Language: Applesoft
Hardware: Apple II, Disk Drive, Game Paddles
Description: Seven High-Resolution activities will challenge the user's visual perception and hand-eye coordination. Activities are Length Perception; Shape Memory; Size Comparison; Star Trace; Centering a Falling Line; Visual Pursuit; and Tilt Maze. Each of the activities offers a wide range of parameter settings for both the skilled and unskilled user.
Price: $\quad \$ 24.95$ includes documentation and diskette.
Available: All computer dealers, or Edu-Ware Services, Inc.
22222 Sherman Way,
Suite 102
Canoga Park, California
91303

Name: A-2a. Moving Averages
System: PET
Memory: $\quad 8 \mathrm{~K}$
Language: BASIC
Hardware: PET/CBM
Description: Computes centered moving averages for 3 span lengths and prints values and/or differences. Discloses cyclic movements in a time series such as stock prices. Includes logical file input and modification to update and delete old data.

| Price: | \$15.00 for cassette and <br> documentation |
| :--- | :--- |
| Author: | Claud E. Cleeton |
| Available: | Claud E. Cleeton <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Bellevue, Washington <br> 98004 |

Name: AIM Video-Trek
System: AIM 65
Memory: 12 K
Language: BASIC
Hardware: Video terminal
Description: A new Trek game designed to run on any AIM 65 with 12 K memory and a video terminal. You command the Enterprise in its search to destroy the invading Klingons. You have superior weaponry, but they have a cloaking device. Sound effects are provided by using CB2 output of the User 6522 VIA (CB2 sound instructions included].
Copies: Just released
Price: $\quad \$ 12.00$ on cassette, ppd.
Author: J.S. Wahlquist
Available: J.S. Wahlquist
1643 N. Formosa Ave., \#4
Los Angeles, California 90046

Microbes
and Updates

Mike Rowe<br>Microbes \& Updates<br>P.O. Box 6502<br>Chelmsford, MA 01824

J.G. Wendel, of Ann Arbor, Michigan, sent this microbe:

For some time I've been using Mr. B.E. Baxter's fine routine in the January 1980 MICRO [20:30) for direct writing to the Apple screen. Just now I've discovered a small bug in it, because I happened to fill up line \#16, apparently for the first time. What happened was that the last character of the line was lost, because the file should be saved with length \$3D0 rather than \$3CF. The correction consists in changing the code at $\$ 0396 / 7$ in your program to C4 B0.

Edward H. Carlson, Okemo, Michigan, sent us this update to his article:

I have received some phone calls about my article, "A 6502 Assembler in BASIC," in MICRO (34:7). If you are having trouble making the program run, rest assured that it does work on OSI C2 and C4 machines, as is. Dale Mayers pounded it into his C4P and found no real errors. However, he did point out that the 56 in line 124 should really be a 14. He also pointed out that a cleaner logic is possible in this region and the program will then run slightly faster and use less memory. The changes are:

$$
\begin{aligned}
& 124 \text { FOR } I=1 \text { TO } 4: \text { FOR } \mathrm{J}=1 \\
& \text { TO } 56 \text { STEP } 4
\end{aligned}
$$

$130 \mathrm{IF} \mathrm{LS}=\mathrm{MID} \$(C \$(1), \mathrm{J}, 3)$
THEN N $=14^{*}(l-1)+(J+3) / 4$ :
GO TO 161
155 delete
$163 \mathrm{OP}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{~F} \$(I), \mathrm{J}, 3))$
If you are having trouble, you have made a key-in error. Check out the program using PRINTs, and check every possible op code and addressing combination. A lot of work? You bet, but worth it! Finally, if you have a C1, you
will need to change the screen display to fit it into 24 characters, probably using PRINTs rather than POKEs. It would be much appreciated by readers of MICRO if anyone who makes the conversion of this program to a Cl or other machine will write a letter describing the modifications.

John G. Ruff of Plymouth, Minnesota sent us the following update:

I read with great interest the March 1981 article, "A 6502 Assembler in BASIC," by E. H. Carlson (34:7). After only a short time I began the translation into my 24 K OSI C1P with $64 \times 32$ video. During the process I discovered items worth commenting on.

1. Although spaces on lines are convenient for casual reading (especially when used to an editor/compiler], a user with 4K RAM cannot afford the luxury; there are 104 spaces (bytes) in lines 2000-2027! By removing all spaces and REMark statements there will be about two pages available above BASIC. Line 2030 should be changed to point to the beginning Non-BASIC location to prevent overwriting the BASIC vectors in page 2. After removing all spaces (lines 2000-2027), change the following lines:

$$
\begin{aligned}
& 124 \text { FORI }=1 \text { TO4:FORJ }=1 \text { TO14: } \\
& \mathrm{N}=3^{*} \mathrm{~J}-2 \\
& 163 \text { OP }=\text { VAL(MIDS(FS(II), } \\
& \left.\left.J J^{\star} 3-2,3\right)\right)
\end{aligned}
$$

Be sure to run the program (without doing any assembly) before attempting to determine the highest location used by BASIC, since variable and string space is allocated at RUN time.
2. The following addressing modes are not documented by the author, although they are included in the program:
a. Indirect:
b. Indexed Indirect:
c. Indirect Indexed:


Note: ** equals Hex digit.
3. To allow the conversion of hexadecimal numbers with 1,2, 3 or 4 digits change lines 4000-4050 to the following:

$$
\begin{aligned}
& 4000 \mathrm{~N}=0: \mathrm{LL}=16: F O R I=1 \mathrm{OL} \\
& 4010 \mathrm{M}=\mathrm{ASC}(\mathrm{MID} \$(C \$, I, 1)) \\
& -48: M=M+7^{*}(\mathrm{M} \quad 9) \\
& 4020 \mathrm{~N}=\mathrm{N}+\mathrm{M}^{\star}(\mathrm{LL} \quad(\mathrm{~L}-\mathrm{I})): \\
& \text { NEXT:C\$ }=\operatorname{STRS}(N): N=Q+23 \\
& -(\operatorname{LEN}(C \$))
\end{aligned}
$$

The above will also right-justify the decimal output to allow alignment with the ASCII output.

I have used the above assembler to build several small device handlers and find the program most successful. Should there be any questions feel free to contact me at Weldon Electronics, Inc., 14010 23rd Ave. No., Plymouth, MN 55441 (612/559-1984).

Lee Meador of Arlington, Texas wrote to us with this tip:

The article entitled "Create a Data Disk for DOS 3.2 and 3.2.1" in the June 81 issue is indeed interesting for someone who needs to save space for data on Apple II disks. There is one related item that needs to be made known about the use of track 0 . The Apple DOS (3.2 or 3.3 ) does not allow the use of track zero. Consider how the track/sector list is used by the DOS. (See pages 128-129 of the DOS manual.) In the list two bytes hold the track ( 1 byte) and the sector (1 byte) of the appropriate sector of the file. The first item in the list for the first 256 bytes of the file, the second item for the next 256 bytes, etc. If the first of the two bytes is zero, then it is assumed by DOS that that block of 256 bytes is not used in the file. A sector is not allocated for that group of 256 bytes. Perhaps this is a design error in the DOS, or perhaps they thought no one would ever try to use track 0 so they could cut out a few bytes of code to speed things up a little. (Obviously, only track 0 , sector 0 should be off limits.) Anyway, when that first byte is zero, the DOS, rather than looking on track zero for the sector, will assume that the sector doesn't exist.

This isn't a problem if all your files are created and read by DOS. DOS will never allocate a sector on track zero, whether you free up the space or not. But... some file copy programs, in particular, FID, MUFFIN and its derivatives, DEMUFFIN, and Niffum, and other similar programs, will put parts of files into track 0 . The problem is only noticed afterwards when you try to use DOS to access the file. It isn't there.

I suggest this change to Mr. Sogge's article to solve the problem. Change the line three up from the bottom of the middle column of page 49 from " $(11,0,38)$ to FF E0 0000 " to read " $(11,0,38)$ to 00000000 ". This will leave track 0 marked as in use and the file copy programs won't be tempted to allocate space there.


Ramuluris PRESENTS. . .


The fallen Time Lord, who presumptuously calls himself The Master, is at large.
The elders of Waldrom have supplied you with the hyperspace-worthy vessel Tardus, and commissioned you to eliminate the evil "Master". Your resources include clones who will fight for you, the formidable CRASER weapons of the Tardus, and magic weapons such as Fusion Grenades and Borelian Matrix Crystals.

Traveling through hyperspace in search of the evil one, you will encounter Time Eaters, Neutron Storms, and other alien creatures and phenomena. Entering real space to search planets, you will encounter still other dangers. You will enter native settlements to buy food and supplies - or to fight for survival.

And once you find The Master can you destroy him?
Based on Dr. Who of PBS fame.
Apple Integer Basic,
Disk, 48K ... \$29.95


## 6502 Bibliography: Part XXXVIII

985. Abacus 1 2, Issue 11/12 (November/December, 1980 )

Anon., "IAC Apnote: Serial Handshake Modification with Tabs," pg. 4-5.

Using the Apple High Speed Serial Interface Card with printers and using the existing data input line to sense if the printer is busy.
Anon., "IAC Apnote: Upper/Lower Case and Special Characters," pg. 9-15.

A method for using the language card on the Apple so that control of upper and lower case is controlled by the shift key.
Sokal, Dan, "IAC Apnotes: Pascal PEEKs and POKEs," pg. 13-15.

A program for your Pascal library.
Anon., "IAC Apnote: Text Screen Mapping and Use," pg. 16-17.

All about text pages, screen maps, and character display values, including an example of use.
Davis, James P., "Savings," pg. 23-24.
A program to calculate interest on savings with your Apple.
Davis, James P., "Printer On - Says-a-Me," pg. 24. A printer control program for the Apple/Trencom 200/AII-g combination.
Davis, James P., "Print Catalogs," pg. 25.
An easy to use catalog printing routine for the Apple.
Robbins, Greg, 'DOS Tricks for DOS 3.2.1,' pg .26.
Several techniques for users of Apple DOS 3.2.1.
Anon., "How to Obtain Those Special Characters," pg. 27.

A machine language routine that allows several extra characters to be printed on the Apple II.
Davis, James P., "Two M/L Sound Effects Programs Revisited,' pg. 29-31.

Tutorial with two example routines for the Apple.
986. Peek(65) 1, No. 12 (December, 1980)

Stevenson, Greg, 'U2,' pg. 2-5.
Tips for OSI users including an addition to BEXEC to add flags.
McMurray, C. Eugene, "Something for Nothing," pg. 5, 16.

How to avoid confusion between variables and BASIC function labels on OSI micros.
Jones, Davis A., "Cassette Corner," pg. 6.
Some hardware and software assists for cassette operation.
Hooper, Phil, "CALL for OSI BASIC," pg. 7-8.
How to provide a CALL routine for the OSI machines to invoke a machine language program.
Williams, Jim, "How to Edit Programs and Keep Variables," pg. 8.

Tips on the use of OSI BASIC variables.
Anon., "Location of Routines," pg. 10-11.
A listing of location of routines in Microsoft BASIC Ver. 1.0, Rev. 3.2 in OSI ClP and Superboard III.

Lundberg, Charles " 'PRINT AT' Hides in BASIC," pg. 11.
A formatting technique for OSI users.
Goodman, Kelsey, "OSI Files," pg. 14-15.
Discussion on handling OSI files.
Dennis, Neil, "Graphics Program,'" pg. 16.
A graphics program to draw patterns on the OSI screen.
987. Stems from Apple 3, No. 12 (December, 1980

Stein, Dick, 'Review of Pascal Version 1.1," pg. 4, 9, 13 Version 1.1 of Apple Pascal has had many changes, reviewed in this article.
Anon., "Renumber Problem - DOS 3.2 and $3.3, "$ pg. 8. How to fix a bug in the Applesoft Renumber program.
Robinson, Alan H., "A Look at Fortran," pg. 10-12.
Comments on a user's experience with Apple Fortran. Some pitfalls to be avoided are discussed.
Dulk, G.A., "Use of Apple as a Word Processor," pg. 15-19.

The Apple Pascal system has many of the desirable features of a Word Processor.
Warren, John W., "Ballistic," pg. 20-22.
This program will calculate and print a complete ballistics table, bullet flight path, etc.
988. The Apple Peel 2, No. 12 (December, 1980)

Brown, Tom, "POKE Salad," pg. 4-5.
Discussion of a malfunction of the VAL function which is memory dependent, for the Apple.
Graham, Johnny, "13/16 Sector Switch Modification," pg. 6.

Add a switch to your Apple disk controller card to switch from 13 to 16 sectors (DOS 3.2/3.3).
Donahue, Tom, "13/16 Sector Switch," pg. 7. Another approach to switch between 13 and 16 sectors on the Apple disk system.
989. MICRO No. 31 (December, 1980)

Carlson, Ron, "Graphing Rational Functions," pg. 7-9.

A discussion and listing of a general-purpose graphing program for the Apple hi-resolution screen.
Elm, Robert L., "A C1P User's Notebook," pg. 11-13. Secrets of the Challenger and notes on ACIA, graphics, tape control, etc. for OSI users.
Davis, Harvey S., "Drawing a Line on PET's $80 \times 50$ Grid," pg. 15-19.

A collection of flexible machine language routines for graphing.
Weiner, Eugene V., "A Random-Character Morse Code Teacher for the AIM 65," pg. 21-23.

Program your AIM to generate code sounds at 13 words per minute and up.
Tibbetts, Gregory L., "An Apple Flavored Lifesaver," pg. 25-30.

An Apple game.

Wright, Loren, "MICRO PET Vet," pg. 33.
Several new Commodore products are discussed.
McBurney, N.R., 'Creating an Applesoft BASIC Subroutine Library," pg. 37-40.

Using EXEC instead of RUN offers increased flexibility and can link Applesoft programs from a common diskresident library.
Staff, "Microscope," pg. 43.
PBASIC-DS Version Two is reviewed.
Crites, Roger C., "Stuffit," pg. 45-47.
A time-saving utility program for PET BASIC files.
Rowe, Mike (Staff), "New Publications," pg. 51.
Two new books are reviewed.
Froelich, Jerry W., M.D., "Microprocessors in Medicine:
The 6502," pg. 53.
Discussion of 6502 computer programs in medical education.
Lindsay, Len, "Atari Bits," pg. 57-59.
Discussion of Atari keyboard buffer, screen protect feature, dynamic keyboard, hi-resolution graphics, etc.
Taylor, William L., "Relocating OSI ROM BASIC Programs," pg. 61-63.

This BASIC program will assist OSI users to understand how their Microsoft BASIC and monitor are used.
Vrtis, Nicholas J., "Cassette I/O for SYM BASIC," pg. 65-69.

Expand the capabilities of SYM BASIC with this cassette I/O handler, allowing access of the cassette as a data file.
Boering, Brooke W., "Multiplying on the 6502," pg. 71-74.

Here are five routines to speed up multiplication on any 6502 system.
Dial, Wm. R., "6502 Bribliography: Part XXVII," pg. 89-93.

Over 150 new references to the voluminous and growing 6502 literature.

## 990. The Apple-Dillo (December, 1980)

Teas, George, 'Pascal Primer,' pg. 5.
Pascal routines providing ready access to inverse and flash functions on the Apple.
Beal, Bob, "Using Parameters with the Control-Y
Monitor Command," pg. 6-8.
A discussion of the Apple Control-Y with two listings as demos.

## 991. The Seed 2, No. 12 (December, 1980)

Nelson, Rod, "Apple Speed," pg. 7.
An interesting experiment comparing the speeds of routines.
Anon., "IAC APNOTE: The Apple II Cassette Interface," pg. 20-23.

A good discussion of the operation of the cassette interface on the Apple II.
992. O.S.I. Users Independent Newsletter No. 7 (December, 1980)
Curley, Charles, "OSI Resources," pg. 1-13.
Entire issue devoted to a catalog of OSI resources including hardware, utilities, education and business programs, word processors, etc.
993. Southeastern Software Newsletter No. 23 (December, 1980)

McClelland, George, "Update on Word Processing," pg. 4-5.

Discussion of Super Text II and 80-character Apple Pie and format.
Christman, John, "Printer Controls for the Paper Tiger," pg. 8-9.

This Applesoft program prints out the number of col-
umns for each size of print on the Paper Tiger.
Sander-Cederlof, Bob, "Character Codes," pg. 9.
A short routine to print out a chart of the complete Apple screen codes.
Powell, David, "Apple Escher," pg. 9. A graphics program for the Apple Hi-Res screen.

## 994. From the Core (December, 1980)

Budge, Joe, "Natterings from the Nabob," pg. 3. A fix for the renumber program in DOS 3.3, disk centering problems, a mod for Apple disk analog cards to reduce errors in going from disk to disk and 3.2 to 3.3 , how to identify disk drives made by Shugart and an alternate supplier.
Anon., "Copyone," pg. 4.
An improved Pascal single disk copy.
Anon., "Oligopoly Simulation," pg. 8-9.
A program to model a simplified economic system and determine the most profitable pricing strategy given a number of alternatives.
995. The Cider Press (December, 1980)

Weiglin, Peter C., "Formatting - Part Three."
More on formatting techniques for the Apple.
Roxburgh, Alastair, "Tape to Tape Copy," pg. 6.
How to copy difficult programs on the Apple cassette interface.
Fields, Randy, "Extensions to Print Using," pg. 7.
Additional information on the Print Using function.
Thompson, C.J., "Niffum," pg. 8-9.
A reverse MUFFIN (DOS 3.3 to 3.2 converter) for the Apple.
Anon., "Try These Patches on DOS 3.2: Part II," pg. 9. A second installment of some handy DOS modifications for the Apple.
Schaffer, Jay, "FRE(x) Modifications," pg. 10-12.
A sixteen-sector version of a program to find the free space remaining on a diskette.
Nareff, Max J., "Beginner's Notes on Pascal," pg. 15-16. A program in Pascal demonstrating the use of the "String"' intrinsic functions (COPY, POS, CONCAT). Also a split-screen demo.
996. Washington Apple Pi 2, No. 12 (December, 1980)

Anon., "The Case of the Disappearing Directory," pg. 7-11.

Discussion of the Pascal handling of directories.
Wurzel, Bill, "Linear Scaling in Hi-Res Graphics,"
pg. 17-18.
A tutorial in Apple Hi-Res graphics.
Wurzel, Bill, "A Bug in the Toolkit Assembler," pg. 18. A bug in the 6502 assembler on the Toolkit disk and a fix for the bug.
Schwartz, Dana J., 'Dana's Hex Loader," pg. 18-20.
A utility for the Apple.
Crosby, Mark L., "Questions, Questions, Questions," pg. 21.

Some common questions on Apple programming or operation.
Mitchell, Howie, "Printing Out the Hi-Res Screen," pg. 22-24.

A program for the Apple and the Anadex DP-9501 printer.
Cottrell, C., "Equations for Some Common Bessel Graphs,' pg. 24-27.

Equations and listing to print Bessel function graphs.
997. AppleGram 2, Issue 12 (December, 1980)

Sander-Cederlof, Bob, "Word-Search Puzzle Maker," pg. 3-7.

Routines to develop matrices of letters and to find hidden words therein, for the Apple.
Firth, Mark, "Short Cut to Common Routines," pg. 8. How to get a common routine into several programs using the Renumber program and the EXEC function on the Apple.
Firth, Mike, "MID\$ vs. LEFT\$ and RIGHT\$ and Other Routines," pg. 13-14.

A series of handy routines and techniques for the Apple.
998. SoftSide 3, No. 3 (December, 1980)

Pence, Fred, "Christmas Card," pg. 20-21, 50-51.
An Apple program using Lo-Res graphics.
Pelczarski, Mark, "The Developing Data Base," pg. 30-33.

Part 4 of a continuing series for the Apple and Atari.
Barts, Duane, "Connect-A-Dot," pg. 34-37. A sketching program for the Apple Hi-Res graphics.
Ward, Dennis and Osborne, Leon A., "One-Liners," pg. 51 .

Several programs for the Apple.
Bohlke, Dave, "Baseball," pg. 65-68.
A game for the Apple.
McKenna, Michael, ''Space Dodge,' pg. 70-71. A game for the Atari.
Bohlke, David, "States and Capitals," pg. 80-81.
An educational game for the Atari.
Bohlke, Dave, "Speedello," pg. 88-89. An Othello-like game for the Atari.
999. G.R.A.P.E. 1, No. 11 (December, 1980)

Wasson, Philip, 'Fast Hi-Res Scroll," pg. 4. An Apple program for a machine language fast scroll.
1000. Softalk 1 (December, 1980)

Wagner, Roger, "Assembly Lines," pg. 14-16, 22. Part 3 of a continuing tutorial on Assembly language, for the Apple.
1001. Apple Assembly Line 1, Issue 3 (December, 1980)

Laumer, Mike, "Integer BASIC Pretty Lister," pg. 3-8.
An Apple program to make pretty listings of Integer BASIC programs.
Sander-Cederlof, Bob, "S-C Assembler II Notes," pg. 9-14.
Discussion and patch for .da directive; block move and copy for Version 4.0; etc.
Sander-Cederlof, Bob, "Handling 16-Bit Comparisons," pg. 16.

How to compare two double-byte numbers on the Apple for branching routines.
1002. T.A.R.T. 1, No. 1 (March, 1980)

Koerin, Sidney, "Ditty," pg. 2.
A fix to DOS 3.2.1 of the Apple to make the INIT program go faster.
Shanes, John, "Faster Than a Speeding Bullet!!", pg. 8. Speed up your Apple cursor with this hardware mod.
1003. T.A.R.T. 1, No. 2 (May, 1980)

Rivers, Jerry, "Lower Case from Your Apple," pg. 2. Two routines to allow you to use both upper and lower case in your Apple programs.
1004. T.A.R.T. 1, No. 3 (October, 1980)

Anon., "Disk Labeling," pg. 3-4.
A BASIC program to label your Apple diskettes.
1005. T.A.R.T. 1, No. 4 (December, 1980)

Hubbard, Bill, "A Striking Article," pg. 2-3.
Add a typewriter-like sound to your Apple keys.
1006. Apple Bits 2, No. 10 (December, 1980)

Anon., "Apple Disk II Card DOS 3.2/3.3 Switch Modification," pg. 4.

A convenient hardware mod for the Apple disk controller card.
Koehler, John, "BASIC Basics," pg. 5.
A common denominator program for the Apple.
Kovalik, Dan, "Taking the Mystery and Magic Out of Machine Language," pg. 8-10.
An Apple Hi-Res graphs left/right flip program.
1007. The Apple-Dillo (January, 1981)

Clardy, Robert C., 'Converting Integer BASIC Programs to Applesoft," pg. 5-6.
A useful utility for the Apple programmer.
1008. OSIO Newsletter 3, No. 1 (January, 1981.)

Sand, Paul A. and Morganstein, David, "Prettylisting," pg. 1, 2.
Improve the appearance of your 6502 program listing with this routine. For OSI computers.
Kirshner, Joe, "OS-65 Notes," pg. 3-5.
Some discussion of the handling of files on the OSI system.
Compton, Radford, "Assignment: Format," pg. 6-7.
Format a report with this OSI program.
1009. The Harvest 2, No. 5 (January, 1981)

Stadfeld, Paul, "Toccata and Fugue in CTRL-D," pg. 1-3.

A tutorial on Apple keyboard logic, modifications to the keyboard, etc.
1010. The Apple Peel 3, No. 1 (January, 1981)

Jenkins, Jerry, "Space Saver," pg. 6.
Get more storage area on that diskette for your Apple Hi-Res pictures.
Jenkins, Jerry, "APTYPE/MX-80," pg. 6.
Improve the compatibility of the APTYPE/MX-80 combination on the Apple.
1011. The Seed 3, No. 1 (January, 1981)

White, Harry, "Move On, String Writer," pg. 3-4. A tutorial for Hi-Res graphics on the Apple, with a HiRes page move demo.
Anon., "Apple Pi Conventions," pg. 6.
A utility to set up program REM statements, etc.
1012. Nibble No. 8 (January, 1981)

Capella, Mark, "Will 'O The Wisp,' pg. 9-21. A fantasy game for the Apple.
Riley, Kevin D., "Cassette Tape Visual Display Monitor," pg. 22-23.

A mod to make tape loading more reliable.
Laird, Alexander, "Fun with Apple's Assembler," pg. 27. Some insight into the Apple Monitor's graphics.
Darr, Robert W., "Apple and the 3.3 DOS," pg. 31. A review of the new DOS and it's feature utilities.
Berman, Andrew, "Blast Away!", pg. 35-39. A shooting gallery program for the Apple.
Harrell, Keith, "Pascal Pointers and Principles," pg. 41-45.

The filer of the Pascal system and the compound statements.
Reynolds, William III, "String Function for Integer BASIC Programs, pg. 53.

A subroutine allowing for a string variable to be set equal to the printed string of a numeric variable on the Apple.
Szetela, David P., "BASIC/Machine Language Subroutine Creator," pg. 53.

A BASIC POKE creator for the Apple BASIC.
Reynolds, William III, "Deleting Files Absolutely," pg. 53-57.

Defeat the recovery of a deleted file on the Apple diskette.
Thompson, C.J., "Niffum," pg. 61. A reverse muffin for the Apple DOS 3.3/3.2 systems. Abrams, Larry, "Loan Reduction Analysis/Display," pg. 63. A financial program for the Apple.
1013. KB Microcomputing No. 49 (January, 1981)

Baker, Robert W., "Potpourri: New PET Monitor," pg. 10-13.

A well-documented monitor ROM called Mojana/1, BASIC 4.0/DOS 2.1, etc.
Baker, Robert, "Real-Time Spectrum Analyzer," pg. 48-50.

A PET program for audio signal analysis.
Chamberlin, Hal, "Simulation of Musical Instruments," pg. 53-58.

Computer music synthesis for 6502 machines.
Rager, Edward, 'Scramble," pg. 78-80.
A PET program demonstrating the utility of nested subroutines.
Deininger, Rolf A. and Tujaka, Don, "Apple Connections," ${ }^{\prime}$ pg. 122-123.

Put connectors on the back panel of your Apple for convenience in connecting peripherals.
Hirbernik, Robert M., "Space Race," pg. 126-128.
A graphics game for the Apple.
Baker, Donn Burke, "Reverse Video for the OSI C1P," pg. 176-182.

A $\$ 10$ hardware mod for the C1P.

Hutchinson, Thomas E., "Second Cassette Interface with One IC," pg. 188-190.

Improve the flexibility of your PET with this mod.

## 1014. Byte 6, No. 1 (January, 1981)

Crawford, Chris and Winner, Lane, "An Introduction to Atari Graphics," pg. 18-32.

A tutorial on Atari graphics with two listings.
Roybal, Phil, "The Picture-Perfect Apple," pg. 226-235.
An Apple program in Assembly language for the Qume Sprint Micro 3 printer.
1015. Softalk 1, No. 5 (January, 1981)

Wagner, Roger, "Assembly Lines, Part 4," pg. 22-27. Incrementing, decrementing and loops in assembly language for the Apple.
1016. Atari Computer Enthusiasts 2, Issue 1 (January, 1981)

De Groot, Bill, 'Business Program,' pg. 2. An Atari program to calculate interest and payments on loans.
1017. Interface Age 6, No. 1 (January, 1981)

Baker, Al, "Game Corner," pg. 22-26. A game for the Atari called "Cannon Duel."
Zant, R.F., "File Cabinet and Ampersosrt II," pg. 94-96. Improve the sort routine in the Apple File Cabinet.
1018. The G.R.A.P.E. Vine (January, 1981)

Ude, Art, "Neon Sign," pg. 3.
A program of the crawler or banner type for the Apple.
Ude, Art, "Throttle," pg. 4.
Applesoft and Integer BASIC listings for slow list on the Apple.
Lawson, Steve, "Screen Position," pg. 5.
An Apple program to find the screen position given row and column parameters.
Lawson, Steve, "Binary to Decimal to Binary Conversion," pg. 6-7.
An assist to converting numbers on the Apple.
1019. From The Core (January, 1981)

Budge, Joe, ''King Kluge,' pg. 3. A hardware mod for the Apple to restore singlestep and other Old ROM features on your Autostart machine.
Whittaker, Alec, "Timer Subroutine," pg. 5. An inexpensive clock for the Apple.
Holzworth, Paul, "The Secrets in Your Apple, ...Maybe,"
pg. 7.
An examination of the latest Apple motherboard seems to predict things to come.
Budge, Joe, "UPPER/lower Case Pascal," pg. 8. Modify your Apple BIOS to allow U/L in Pascal.
Anon., "DOS to Pascal Transfer Program," pg. 8-9. A program which will transfer Apple files from DOS to Pascal.
Anon., "L/C System Startup for Pascal 1.1," pg . 13. A program which calls an assembly language routine to set up various startup options of the Apple.
1020. The Michigan Apple-Gram (August, 1980)

Rivers, Jerry, "Technical Tidbits," pg. 6.
Fix for the fix for the DOS Append on 3.2 and 3.2.1; garbage collection to free up space, etc. for the Apple.

Anon., "IAC Apnote: Applesoft Array Eraser," pg. 16. A program for the Apple.
Anon., "IAC Apnote: Converting Integer BASIC Programs to Applesoft," pg. 19.

A discussion of a useful procedure for the Apple.
Anon., "IAC Apnote: Out of Memory Errors," pg. 20.
Reasons for getting "Out of Memory" errors on the Apple.
Anon., "IAC Apnote: VTAB and HOME Converter,"
pg. 21.
Some useful routines for the M\&R SUP-R-Terminal on the Apple.
Anon., "IAC Apnote: Modifying the LISA Assembler," pg. 22.

Modification of the Apple utility to handle user functions. Anon., "IAC Apnote: DEL Character Killer,' pg. 26.

A routine for the Apple system.
Anon., "IAC Apnotes: Misc. Apnotes for Apple Pascal Systems," pg. 28-37.

A series of Pascal Notes on GETREM, TAKE 280, TRANSFER, FOREIGN, LONG INTEGER FIX, LOAD/SAVE to DISK, etc.

## 1021. The Michigan Apple-Gram (September, 1980)

Tuttleman, Roger, ''Disk Inform,'' pg. 7-10.
An Apple assembly language program for printing information about a diskette.
Rivers, Jerry, "Technical Tidbits," pg. 11-14.
A tutorial on the 6502 operation and the LISA Assembler.
Hall, Lennis L. and Ankofski, Tom, "Select By Number," pg. 17-19.

A Hello program for the Apple Disk system.

## 1022. The Michigan Apple-Gram (October, 1980)

Neuhauser, Robert, "I/O Port and Joysticks," pg. 5. A hardware article for improving the game port I/O of the Apple.
Holderby, Michael, "Integer BASIC Token Scheme," pg. 6-7. A tutorial for the Apple.
McClaren, Mac, "Catalog Free Sectors Revisited," pg. 7. A listing that works in either Applesoft or Integer BASIC, together with notes on just how this machine language routine works.
Smith, Paul, "Catalog List," pg. 8-9.
A tutorial for the Apple.
Tuttleman, Roger, "Integer BASIC Append Methods," pg. 11-12.

Several routines for the Apple, including 'To Text Create,' a program to create an EXEC file to convert BASIC programs to Text files.
Tuttleman, Roger, "Fix for Applewirter," pg. 12. A fix for using Applewriter with the Paymar Lower Case Adapter.
Tuttleman, Roger, "Integer Info Create," pg. 13. A program to create an EXEC file to return HIMEM, LOMEM, start of program and end of variable address.
Anon., "My Disk Runneth Over," pg. 15-16.
Several routines including one that allows the Apple to use graphics programs written for the TRS-80, a fast text-copy program, etc.
1023. The Michigan Apple-Gram (November, 1980)

Holderby, Mike, 'Programmer's Corner," pg. 5. A tutorial on how to add beeps, buzzes, etc. to your Apple programs.

Walker, Carl, "DOS Patch for Single Stroke Entry," pg. 6.

A Single Stroke Entry to use with DOS.
Tuttleman, Roger, "Remove Lisa," pg. 8.
A utility for Apple users of the LISA assembler.
Rivers, Jerry, "Text File Reader," pg. 9.
A program to read any sequential text file into memory.
McLaren, Mac, "Disk Zap Conversion with DOS 3.3," pg. 9.

Mods for the popular Disk Zap utility to adapt it to the new Apple DOS 3.3.
Tuttleman, Roger, "Introductory Fortran Program," pg. 10-11.

A short program showing the forms of various FORTRAN statements and how to get the Apple clear of the bugs.
Smith, Paul and Rivers, Jerry, "Serial Interface Card Tabbing," pg .11.

How to tab past column 40 using the Apple serial interface card.
Tuttleman, Roger, "FORTRAN Turtle Graphics Demo," pg. 14-15.
A simple Apple program demonstration of Fortran Turtle Graphics.
Tuttleman, Roger, "POKE Writer," pg. 15.
A program to convert assembly language routines to POKEs for BASIC programs.
Macdowell, Mac, "My Disk Runneth Over," pg. 16-17. A software mod for Apple sound, and a telephone dialing routine that yields fast dialing capability.
Paul, L., "Un-Muffining Routine," pg. 17.
A procedure for converting a program from DOS 3.3 to DOS 3.2.
Rivers, Jerry, "The FORTRAN Format," pg. 18-19.
Notes from an Apple Fortran user with a Fortran listing of TEXTPRT, a routine to print any 'Text' file to your printer.
Tuttleman, Roger, "Free Sectors," pg. 20.
An Integer BASIC program to print the volume number and number of free sectors on an Apple disk.
1024. The Michigan Apple-Gram (December, 1980/ January, 1981)
Holderby, Mike, 'Programmer's Corner,'" pg. 6-7.
A look at Apple's error trapping and input editing techniques.
Rivers, Jerry, "Fortran Format," pg. 7.
Notes by an Apple Fortran user shows the pitfalls in this language.
Lea, Diane, "Beginner's Comer," pg. 10-11.
Some tips for new Apple owners, including a graphics listing.
Tuttleman, Roger, "RWTS Disk I/O From BASIC," pg. 12-16.
A guide to using the RWTS disk utility, with several programs and routines for the Apple.
Rivers, Jerry, "Maybe You Didn't Know That...," pg. 17-18.
Some interesting notes on the Apple HIMEM:, LOMEM:, the speed of interpreters vs. compilers,
Pascal and Fortran speed, etc.
Wiggington, Randy, "Read/Write Track-Sector," pg. 20-35.

Listing for this major Apple utility and a description of its internal workings.

## INTRODUCING COGNIVOX Series VIO-1000 A Revolutionary New Voice Input and Output Peripheral



## High Fidelity Voice Response Industrial Quality Recognition

## PET - AIM-65 - APPLE II

COGNIVOX series VIO-1000 is a top-of-the-line voice I/O peripheral for business and educational applications and the demanding hobbyist.

It can be trained to recognize words or short phrases drawn from a vocabulary of 32 entries chosen by the user. It will talk back with up to 32 words or short phrases. In disk based systems, response vocabularies can be stored on the disk and brought to memory as needed, giving an effectively unlimited number of vocabular y entries. The quality of voice response is excellent, and it is far superior to that of speech synthesizers.

COGNIVOX series 1000 comes complete and ready to plug into your computer (the computer must have at least 16 K of RAM). It connects to the parallel I/O port of the PET, to the game paddle connector on the Apple and to the J1 port on the AIM-65. Connectors are included as required. Also included are a microphone, cassette with software and extensive user manual. A built-in speaker/amplifier is provided as well as a jack for connecting an external speaker or amplifier.

Software supplied with COGNIVOX includes two voice operated, talking video games, VOTH and VOICETRAP. These games are absolutely captivating to play, and the only voice operated talking games that are commercially available

Adding voice $I / O$ to your own programs is very simple. A single statement in BASIC is all that is required to say or to recognize a word. Complete instructions on how to do it are provided in the manual.

In keeping with the VOICETEK tradition of high performance at affordable price, we have priced COGNIVOX series 1000 at the unbelievably low, introductory price of $\mathbf{\$ 2 4 9}$ (plus $\$ 5$ shipping in the US, CA add $6 \%$ tax. Foreign orders welcome, add $10 \%$ for handling and shipping via AIR MAIL). When ordering, please give the make and model of your computer, the amount of RAM and whether you have disks or not.

In addition to COGNIVOX series VIO-1000. VOICETEK manufactures a complete line of voice $1 / O$ peripherals for most of the popular personal computers. Speech recognition-only peripherals are available for the 8 K PET and the 4 K AIM .

For more information call us at 805-685-1854 or write at the address below

Dealer Inquiries invited.
Dept E, P.O. Box 388 Goleta, CA 93116

ADVERTISERS' INDEX
JULY 1981
Advertiser's Name ..... Page
Aardvark Technical Services ..... 74
Abacus Software ..... 31, 60
Andromeda, Inc. ..... 2
Applied Analytics, Inc. ..... 17
Aurora Software Associates ..... 69
Basic Business Solutions ..... 94
Bruce Beech, Publisher ..... 86
Beta Computer Devices. ..... 82
The Book ..... 26
Broderbund Software ..... 35
Central Point Software ..... 82
Classified Ads ..... 97
Computer Mail Order ..... 98
The Computerist, Inc. ..... IBC
Connecticut Information Systems, Co. ..... 26
Consumer Computers ..... 20
Continental Software ..... 23
Creative Computing ..... 112
Decision Systems ..... 31
Digibyte Systems. ..... 12
Dr. Dobb's Journal ..... 24
Fessenden Computer Service ..... 31
Hayes Microcomputer Products, Inc ..... BC
Human Engineered Software ..... 90
Instant Software ..... 58-59
Imprint Software. ..... 30
D.R. Jarvis Computing. ..... 36
Lazer Systems ..... 4
LJK Enterprises ..... 97
Logical Software, Inc. ..... 78
MICRO INK, Inc. ..... $57,90,93,96$
Microsoft Consumer Products ..... IFC
MicroSoftware Systems ..... 31
Micro-Ware Distributing Inc. ..... 44
Mittendorf Engineering ..... 71
Nibble ..... 100
Nikrom Technical Products ..... 86
Ohio Scientific "Small Systems Journal" ..... 92-93
Omega Software Systems, Inc. ..... 86
Orion Software Associates ..... 78
Pegasys Systems ..... 36
Perry Peripherals ..... 60
Progressive Computing ..... 80
Quality Software. ..... 40
Rainbow Computing ..... 95
Recreational Computing ..... 24
Rosen Grandon Associates ..... 36
Sensible Software. ..... 32
Serendipity Systems, Inc. ..... 60
Skyles Electric Works ..... 14
Small Business Computer Systems ..... 36
Soft CTRL Systems ..... 44
Southeastern Software ..... 1
Technical Products ..... 78
TSE-Hardside ..... 104-105
Used Computer Exchange ..... 60
Versa Computing. ..... 48
Voicetek ..... 111

# Why Advertise in MICRO? 

Find Out!
Call (617) 256-5515
Ask for Cathi Bland

## Space Games-I

Cassette CS-4001 $\$ 11.95 \quad 4$ programs Requires 16K Apple II or Appie il Plus


Saucer Invasion. Fire missles to destroy the invaders who fly at different speeds and altitudes.


Star Wars. Shoot down as many TIE fighters Dynamic Bouncer. A colorful. quer-changing as possible in 90 seconds.


Rocket Pllot. Maneuver your spaceship over the mountain using horizontal and vertica thrusters.
 graphics demonstration

## Strategy Games

Cassette CS-4003 \$1t.95 4 Programs Requires 16 K Apple II or Apple II Pius


Blockede. Build a wall to trap your opponent, but don't hit anything.


Skunk. A 2-player strategy game played with dice, skill and luck


UFO. Use lasers, warheads or guns to destroy an enemy spacecraft.


Genkus. A tast-moving trivia quiz with scores of questions.

## Sports Games-I

Cassette CS-4002 \$11.95 4 programs Requires 16K Apple II or Apple II Plus


Baseball; A 2-player game with pitching. batting. fielding. steating and double plays.


Torpedo Alley. Sink as many warships as possible in 2 minutes.


Breakout. Four skill levels and improved scoring make this the best breakout ever. game.


Parrot. A Simon-type game with letters and tones. Dueling digits is a version with numbers.
 across the board in this intriguing strategy

## Brain Games

Cassette CS-4004 \$11.95 7 programs
Requires 16 K Appie II or Apple II Plus


Dodgem. Be the first to move all your pieces Nuclear Reaction. A game of skill. fast decisions and quick reversals of position


Midpoints and Lines. Two colortul graphic demonstrations. Tones lets you make mus and sound effects

## Order Today

To order any of these software packages, send payment pius $\$ 2.00$ postage and handling per order to Creative Computing. Morris Plains, NJ 07950. Attn: Clarice Visa. MasterCard and American Express orders may be called in toll-tree.

Order today at no risk If you are completely satisfied, your money will promptly and courteously refunded.

Creative Computing Software
Morris Plains. NJ 07950 Toli-free 800-631-8112 in NJ, 201-540-0445
greative corepatied softwape

## You Can Do It All with FLEXI PLUS

Build a complete system or expand your Apple or other 6502-based system.

## 6809-BASED MICROCOMPUTER

## FLOPPY DISK CONTROLLER

RS-232 COMMUNICATIONS


## IEEE 488 BUS CONTROLLER

## A remarkably fiexible microcomputer board

FLEXI PLUS is a 6809-based single board microcomputer with up to 56 K of on-board memory, extensive serial and parallel IIO capability and a cassette interface. It may be used without the 6809 as an expansion board for most 6502,6800 and 6809 systems. The Floppy Disk Controller supports up to four $8^{\prime \prime}$ drives or three $51 / 4$ " drives and provides IBM com patible formats. The fully buffered RS-232 Communications Port features programmable data formats and baud rates from 50 to 19,200. The IEEE 488 Bus Controller supports interfacing to soph sticated instrumentation and test equipment

## Microcomputer Features:

- State-of-the-art Motorola 6809E microprocesso
- Supports seven memory devices; Up to 56 K bytes $2 \mathrm{~K}, 4 \mathrm{~K}$ and BK RAMs, EPROMs or ROMS
- Cassette port handles many formats
- 20 mA current loop TTY port
- 6522 VIA for parallellserial I/O
- Directly expandable with VIDEO pLUS and DRAM PLUS


## Communications Features:

- Programmable baud rates from 50 to 19.2 K baud
- Parity generation and checking
- Programmable word length and stop bils
- Full or half-duplex operation
- Full buffering on all lines

IEEE 488 Instrumentation Bus:

- Full implementation of IEEE standard
- Uses Motorola 68488 control
ler and 3448 buffers
- Standard 24 -pin edge connector


## Floppy Controlier:

- WD 1791 supports IBM and other formats
- Up to four $8^{\prime \prime}$ Shugart compatible drives
- Up to three $51 / 4^{\text {" Shugart com- }}$ patible drives
- Includes fundamental disk operating software

Software Suppor:

- Includes a system monitor, device drivers and other basic software support
- We will be selling FLEXTM OS-9TM and/or other operating systems that support BASIC, Pascal, FORTH, word processing, assemblers, and many commercial software packages

> FLEXI PLUS Base Price Floppy Disk Controller Option 6809 Micropracessor Option RS-232 Communications Option IEEE 488 Bus Controller Option

TCB-108
TCX-931
$\$ 320$

Add option prices to Base Price to obtain system price. FLEXI PLUS must be ordered with at least one option. Prices quoted are for US only. Add $\$ 3.00$ surface postage in US. Please write for foreign pricing. Massachusetts residents add $5 \%$ sales tax.

OEM inquiries invited.
(FLEX is a trademark of Technical Systems Consultants)
(OS-9 is a trademark of Microware Systems Corporation)

At Hayes, we don 't believe in second best. Or planned obsolescence. We believe in taking the state of the art to the limit. Our new Smartmodem, for example, is the most sophisticated 300-baud originate answer modem you can buy. And yet, it is perhaps the easiest-to-use modem ever.

RS-232C Compatible. Smartmodem lets any RS-232C compatible computer or terminal communicate by phone with other computers and time-sharing systems located anywhere in North America You get full and half-duplex operation with both Touch-Tone : and pulse dialing

## Auto-Answer/Dial/Repeat.

Smartmodem can answer the phone, dial a number, receive and transmit data, and then hang up the phone - automatically! If desired. Smartmodem will even repeat the last command. You can depend on Smartmodem for completely unattended operation.

## Completely Programmable.

Smartmodem can be controlled using


Mierocombuter Comoonent Svstems
any programming language. Over 30 different commands can be written into your programs or entered directly from your keyboard.

Smartmodem also includes several switch-selectable features that let you tailor performance to your exact needs. You can "set it and forget it" for the ultimate in convenience

Built-in Audio Monitor. Thanks to an internal speaker, you can actually listen to your connection being made. You'll know immediately if the line is busy or if you reached a wrong number -
and you don't even need a phone!
Status at a Glance. Seven LED's indicate Smartmodem s current operating mode: auto-answer, carrier detect, off hook, receive data, send data, termina ready and modem ready. You're never left in the dark!

## Direct-Connect Design.

 Smar tmodem is FCC registered for direct connection to any modular phone jack - there's no acoustic coupler to cause signal loss and distortion.Smartmodem, Smart Buy. Professional quality features. Versatile performance. A full two-year limited warranty. A suggested retail price of only $\$ 279$.

What more could you want? Perhaps the matching Hayes Stack Chronograph, an RS-232C compatible calendar/ clock system.

Check out the Smartmodem wherever fine computer products are sold. And don't settle for anything less than Hayes.

COHayes

# Smartmodem. The ultimate concept in modems is now a reality. 


[^0]:    ORDERING INFORMATION: Phone Orders invited using VISA. MASTERCARD. AMERICAN EXPRESS. DINERS CLUB. CARTE BLANCHE, or bank wire tronsfer GTedit cords subject to service charge; $2 \%$ for VISA $G M C$. $5 \%$ for AE. DC G CB. Mail Orders may send credit card account number (include expiration dote). coshiers or certified check. money order, or personal check (allow 10 days to cleor). please include a telephone number with all orders. Foreign orders (excluding Miliary price chonge and ovailability without notice. All equipment is new and complete with manufacturer worranty (usually 90 days). We cannot guarantee price thange of

    WE ARE A MEMBER OF THE BETTER BUSINESS BUREAU AND TME CNAMBER OF COMMERCE
    SNOWROOM PRICES MAY DIFFER FROM MAIL ORDER PRICES.
    PLEASE SEND ORDERS TO:
    CONSIMER COMPUTERS MAIL ORDER 8314 PARKWAY DRIVE, GROSSMONT SHOPPING CENTER NORTH LA MESA CALIF. 92041

[^1]:    David L. Rosenberg is presently employed as an analyst with the Management Sciences department of Holiday Inns, Inc., and has been in the computer field for eight years. He is a founding member of the Apple Core of Memphis and has contributed programs to its "diskette of the month." In addition to working on software and hardware projects for his Apple, which he has owned for a year and a half, he is actively pursuing a Masters degree in Computer Science.

[^2]:    1 REM APPLE ELECTRONIC TYPING PROGRAM
    2 REM BY THOMAS D. BROCK
    3 REM
    10 DIM CHRS(126): FOR I=129 TO 255: POKE 1927+(I-1), I: NEXT I: POKE 2182 .30
    GOSUB 8000
    2 CALL -936: VTAB 13
    5 INPUT "SINGLE OR DOUBLE SPACE (1/2)",DS
    0 PR 1 PN
    0 CALL -936
    $0 \mathrm{~S}=1320: \mathrm{Sl}=\mathrm{S}: \mathrm{J}=0: \mathrm{P}=768: \mathrm{Tl}=768: \mathrm{AC}=0$
    $5 \mathrm{Jl}=39: \mathrm{Fl}=0: \mathrm{Kl}=1$
    $0 \mathrm{~B}=0: \mathrm{FL}=0$
    O POKE 34,24: POKE S,96: POKE TERM, 219
    $90 \mathrm{~F}=0$
    100 UC=AC
    110 X= PEEK (-16384)
    120 IF $X=129$ THEN $A C=32$
    130 IF $X=147$ THEN $A C=0$
    140 IF $X=129$ OR $X=147$ THEN GOTO 100
    150 IF $X=137$ THEN GOTO 5000
    160 IF $X=138$ THEN GOTO 5500
    170 IF X=155 THEN UC=32
    180 IF $X=155$ THEN GOTO 110
    190 IF $X=136$ THEN GOTO 3000
    200 IF $X=149$ THEN GOTO 4000
    205 IF $X=154$ THEN GOTO 7000
    210 IF X>127 THEN GOTO 1000
    220 IF $F=0$ THEN GOTO 100
    230 A= PEEK (Pl)
    240 IF A 255 THEN GOTO 300
    250 IF DS $=2$ THEN PRINT CHRS $(10,10)$;
    255 GOTO 90
    300 A $\$=\operatorname{CHR}(\mathrm{A}, \mathrm{A})$
    310 PRINT AS;

    | 310 PRINT A |
    | :--- |
    | 320 |

    330 GOTO 100
    1000 POKE $-16368,0$
    $1010 \times 1=X-128$
    1020 IF Xl> 664 THEN $X 1=X 1+32$-UC
    1030 IF X $>=192$ THEN $X=X-(U C * 6)$
    1040 POKE Sl,X
    1050 POKE P,XI
    1060 POKE P+1, 255
    1070 IF $X=141$ THEN GOTO 2000
    $1080 \mathrm{P}=\mathrm{P}+1$
    $1090 \mathrm{~J}=\mathrm{J}+1$
    $1095 \mathrm{~B}=\mathrm{B}+1$
    1100 IF J=39 THEN GOSUB 6000
    1110 IF B=MARGIN-7 THEN PRINT CHR $(7,7)$;
    $1120 \mathrm{Sl}=\mathrm{S}+\mathrm{J}$
    $1130 \mathrm{X}=\mathrm{PEEK}$ (S1)
    1140 IF $X>=192$ THEN $X=X-128$
    1150 IF $X<192$ AND $X>=160$ THEN $X=X-64$
    1160 POKE S1,X
    1170 GOTO 100
    2000 IF $F=1$ THEN POKE 51.96
    2002 IF $F=1$ THEN GOTO 100
    2003 Pl=T1
    2004 UC $=0$
    $2005 \mathrm{~B}=0$
    2010 POKE 34,0
    2020 CALL -936
    2030 POKE 34, 24
    $2040 \mathrm{~S}=1320: \mathrm{J}:=0: F=1: S I=S: F L=0$
    $2045 \mathrm{~J} \mathrm{I}=39$
    $2048 \mathrm{~T}=\mathrm{Fl}: \mathrm{Fl}=\mathrm{Kl}: \mathrm{Kl}=\mathrm{T}$
    $2050 \mathrm{P}=768+\mathrm{F} 1 * 100$
    2052 Tl=P
    2060 POKE S,96: POKE TERM, 219
    2070 GOTO 100
    3000 POKE - 16368,0
    $3005 \mathrm{X}=\mathrm{PEEK}$ (SI)
    3010 IF $X<=127$ AND $X>=96$ THEN $X=X+64$
    3020 IF $X>=64$ AND $X<=95$ THEN $X=X+128-(3 * F L)$
    3030 POKE SI,X
    $3040 \mathrm{~J}=\mathrm{J}-1$
    $3045 \mathrm{P}=\mathrm{P}-1$
    $3047 \mathrm{~B}=\mathrm{B}-1$
    3048 FL=0
    3050 IF $J=127$ THEN $J=J 1$
    3060 IF J<O THEN $\mathrm{J}=0$
    3070 S1=S+J
    $3080 \mathrm{X}=\mathrm{PEEK}(\mathrm{S} 1)$
    3090 IF $X>=192$ THEN $X=X-128$
    3100 IF $X<192$ AND $X>=160$ THEN $X=X-64$
    3105 IF $X<=63$ THEN FL=64
    3110 POKE S $1, X+F L$
    3120 GOTO 100
    4000 POKE -16368,0
    $4005 \mathrm{X}=\mathrm{PEEK}$ (S1)
    $4007 \mathrm{~T}=\mathrm{X}$
    (Continued)

[^3]:    Charles L. Stanford is a Civil Engineer, has a PE license, and manages the Facilities Department of Philadelphia's transit system. He got into microcomputing as a hobby from the hardware side, designing toys and games with chips, and bought a C1P about two years ago. He has been "redesigning" bot the hardware and software ever since.

[^4]:    Instructions for listing 2.
    BPSAV-ROUIINES CALLED BY AIM BASIC
    -GET X, Y-COORDINATE PAIRS FROM BIT PAD DIGITIZER
    -SAVE BASIC ARRAYS AS DATA FILES ON CASSETTE TAPE, OR DISK
    -LOAD BASIC DATA FILES FROM CASSETTE
    DISK INTO
    BIT PAD IS SET FOR:
    -POINT MODE OUTPUT
    BAD RATE = 1200 RS-23
    ARGUMENT OF USR( |IS USED TO FIND SUBROUTINES

